Tonic's picture
Update app.py
e535f32
raw
history blame
11.9 kB
from argparse import ArgumentParser
from pathlib import Path
import copy
import gradio as gr
import os
import re
import secrets
import tempfile
from modelscope import (
AutoModelForCausalLM, AutoTokenizer, GenerationConfig, snapshot_download
)
os.environ['CUDA_VISIBLE_DEVICES'] = '0,1'
DEFAULT_CKPT_PATH = 'qwen/Qwen-VL-Chat'
REVISION = 'v1.0.4'
BOX_TAG_PATTERN = r"<box>([\s\S]*?)</box>"
PUNCTUATION = "!?。"#$%&'()*+,-/:;<=>@[\]^_`{|}~⦅⦆「」、、〃》「」『』【】〔〕〖〗〘〙〚〛〜〝〞〟〰〾〿–—‘’‛“”„‟…‧﹏."
uploaded_file_dir = os.environ.get("GRADIO_TEMP_DIR") or str(Path(tempfile.gettempdir()) / "gradio")
def _get_args():
parser = ArgumentParser()
parser.add_argument("-c", "--checkpoint-path", type=str, default=DEFAULT_CKPT_PATH,
help="Checkpoint name or path, default to %(default)r")
parser.add_argument("--revision", type=str, default=REVISION)
parser.add_argument("--cpu-only", action="store_true", help="Run demo with CPU only")
parser.add_argument("--share", action="store_true", default=False,
help="Create a publicly shareable link for the interface.")
parser.add_argument("--inbrowser", action="store_true", default=False,
help="Automatically launch the interface in a new tab on the default browser.")
parser.add_argument("--server-port", type=int, default=8000,
help="Demo server port.")
parser.add_argument("--server-name", type=str, default="127.0.0.1",
help="Demo server name.")
args = parser.parse_args()
return args
def handle_image_submission(_chatbot, task_history, file):
if file is None:
return _chatbot, task_history
file_path = save_image(file, uploaded_file_dir) # Renamed for clarity
history_item = ((file_path,), None)
_chatbot.append(history_item)
task_history.append(history_item)
return predict(_chatbot, task_history)
def _load_model_tokenizer(args):
model_id = args.checkpoint_path
model_dir = snapshot_download(model_id, revision=args.revision)
tokenizer = AutoTokenizer.from_pretrained(
model_dir, trust_remote_code=True, resume_download=True,
)
if args.cpu_only:
device_map = "cpu"
else:
device_map = "auto"
model = AutoModelForCausalLM.from_pretrained(
model_dir,
device_map=device_map,
trust_remote_code=True,
bf16=True,
resume_download=True,
).eval()
model.generation_config = GenerationConfig.from_pretrained(
model_dir, trust_remote_code=True, resume_download=True,
)
return model, tokenizer
def _parse_text(text):
lines = text.split("\n")
lines = [line for line in lines if line != ""]
count = 0
for i, line in enumerate(lines):
if "```" in line:
count += 1
items = line.split("`")
if count % 2 == 1:
lines[i] = f'<pre><code class="language-{items[-1]}">'
else:
lines[i] = f"<br></code></pre>"
else:
if i > 0:
if count % 2 == 1:
line = line.replace("`", r"\`")
line = line.replace("<", "&lt;")
line = line.replace(">", "&gt;")
line = line.replace(" ", "&nbsp;")
line = line.replace("*", "&ast;")
line = line.replace("_", "&lowbar;")
line = line.replace("-", "&#45;")
line = line.replace(".", "&#46;")
line = line.replace("!", "&#33;")
line = line.replace("(", "&#40;")
line = line.replace(")", "&#41;")
line = line.replace("$", "&#36;")
lines[i] = "<br>" + line
text = "".join(lines)
return text
def save_image(image_file, uploaded_file_dir):
upload_dir = Path(uploaded_file_dir) / "uploads"
upload_dir.mkdir(parents=True, exist_ok=True)
filename = secrets.token_hex(10) + Path(image_file.name).suffix
file_path = upload_dir / filename
with open(file_path, "wb") as f:
f.write(image_file.read())
return str(file_path)
def add_file(history, task_history, file):
if file is None:
return history, task_history
file_path = save_image(file)
history = history + [((file_path,), None)]
task_history = task_history + [((file_path,), None)]
return history, task_history
def _launch_demo(args, model, tokenizer):
uploaded_file_dir = os.environ.get("GRADIO_TEMP_DIR") or str(
Path(tempfile.gettempdir()) / "gradio"
)
def predict(_chatbot, task_history):
if not _chatbot:
return _chatbot
chat_query = _chatbot[-1][0]
if isinstance(chat_query, tuple):
query = [{'image': chat_query[0]}]
else:
query = [{'text': _parse_text(chat_query)}]
inputs = tokenizer.from_list_format(query)
tokenized_inputs = tokenizer(inputs, return_tensors='pt')
tokenized_inputs = tokenized_inputs.to(model.device)
pred = model.generate(**tokenized_inputs)
response = tokenizer.decode(pred.cpu()[0], skip_special_tokens=False)
if 'image' in query[0]:
image = tokenizer.draw_bbox_on_latest_picture(response)
if image is not None:
image_path = save_generated_image(image, uploaded_file_dir) # Renamed for clarity
_chatbot[-1] = (chat_query, (image_path,))
else:
_chatbot[-1] = (chat_query, "No image to display.")
else:
_chatbot[-1] = (chat_query, response)
return _chatbot
def save_image(image, uploaded_file_dir):
if image is None:
return None
temp_dir = secrets.token_hex(20)
temp_dir = Path(uploaded_file_dir) / temp_dir
temp_dir.mkdir(exist_ok=True, parents=True)
name = f"tmp{secrets.token_hex(5)}.jpg"
filename = temp_dir / name
image.save(str(filename))
return str(filename)
def regenerate(_chatbot, task_history):
if not task_history:
return _chatbot
item = task_history[-1]
if item[1] is None:
return _chatbot
task_history[-1] = (item[0], None)
chatbot_item = _chatbot.pop(-1)
if chatbot_item[0] is None:
_chatbot[-1] = (_chatbot[-1][0], None)
else:
_chatbot.append((chatbot_item[0], None))
return predict(_chatbot, task_history)
def add_text(history, task_history, text):
task_text = text
if len(text) >= 2 and text[-1] in PUNCTUATION and text[-2] not in PUNCTUATION:
task_text = text[:-1]
history = history + [(_parse_text(text), None)]
task_history = task_history + [(task_text, None)]
return history, task_history, ""
def add_file(history, task_history, file):
if file is None:
return history, task_history # Return if no file is uploaded
file_path = file.name
history = history + [((file.name,), None)]
task_history = task_history + [((file.name,), None)]
return history, task_history
def reset_user_input():
return gr.update(value="")
def process_response(response):
response = response.replace("<ref>", "").replace(r"</ref>", "")
response = re.sub(BOX_TAG_PATTERN, "", response)
return response
def process_history_for_model(task_history):
processed_history = []
for query, response in task_history:
if isinstance(query, tuple):
query = {'image': query[0]}
else:
query = {'text': query}
response = response or ""
processed_history.append((query, response))
return processed_history
def reset_state(task_history):
task_history.clear()
return []
with gr.Blocks() as demo:
gr.Markdown("""# Welcome to Tonic's Qwen-VL-Chat Bot""")
gr.Markdown(
""" Qwen-VL-Chat is a multimodal input model.
本WebUI基于Qwen-VL-Chat打造,实现聊天机器人功能 但我必须修复它这么多也许我也得到一些荣誉
You can use this Space to test out the current model [qwen/Qwen-VL-Chat](https://huggingface.co/qwen/Qwen-VL-Chat) You can also use 🧑🏻‍🚀qwen/Qwen-VL-Chat🚀 by cloning this space. 🧬🔬🔍 Simply click here: <a style="display:inline-block" href="https://huggingface.co/spaces/Tonic1/VLChat?duplicate=true"><img src="https://img.shields.io/badge/-Duplicate%20Space-blue?labelColor=white&style=flat&logo=&logoWidth=14" alt="Duplicate Space"></a></h3>
Join us : 🌟TeamTonic🌟 is always making cool demos! Join our active builder's🛠️community on 👻Discord: [Discord](https://discord.gg/nXx5wbX9) On 🤗Huggingface: [TeamTonic](https://huggingface.co/TeamTonic) & [MultiTransformer](https://huggingface.co/MultiTransformer) On 🌐Github: [Polytonic](https://github.com/tonic-ai) & contribute to 🌟 [PolyGPT](https://github.com/tonic-ai/polygpt-alpha)
""")
with gr.Row():
with gr.Column(scale=1):
chatbot = gr.Chatbot(label='Qwen-VL-Chat')
with gr.Column(scale=1):
with gr.Row():
query = gr.Textbox(lines=2, label='Input', placeholder="Type your message here...")
submit_btn = gr.Button("🚀 Submit")
with gr.Row():
file_upload = gr.UploadButton("📁 Upload Image", file_types=["image"])
submit_file_btn = gr.Button("Submit Image")
regen_btn = gr.Button("🤔️ Regenerate")
empty_bin = gr.Button("🧹 Clear History")
task_history = gr.State([])
submit_btn.click(
fn=predict,
inputs=[chatbot, task_history],
outputs=[chatbot]
)
submit_file_btn.click(
fn=handle_image_submission,
inputs=[chatbot, task_history, file_upload],
outputs=[chatbot, task_history]
)
regen_btn.click(
fn=regenerate,
inputs=[chatbot, task_history],
outputs=[chatbot]
)
empty_bin.click(
fn=reset_state,
inputs=[task_history],
outputs=[task_history]
)
query.submit(
fn=add_text,
inputs=[chatbot, task_history, query],
outputs=[chatbot, task_history, query]
)
gr.Markdown("""
Note: This demo is governed by the original license of Qwen-VL.
We strongly advise users not to knowingly generate or allow others to knowingly generate harmful content,
including hate speech, violence, pornography, deception, etc.
(注:本演示受Qwen-VL的许可协议限制。我们强烈建议,用户不应传播及不应允许他人传播以下内容,
包括但不限于仇恨言论、暴力、色情、欺诈相关的有害信息。)""")
demo.queue().launch()
def main():
args = _get_args()
model, tokenizer = _load_model_tokenizer(args)
_launch_demo(args, model, tokenizer)
if __name__ == '__main__':
main()