# This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. from argparse import ArgumentParser from pathlib import Path import copy import gradio as gr import os import re import secrets import tempfile from modelscope import ( AutoModelForCausalLM, AutoTokenizer, GenerationConfig, snapshot_download ) os.environ['CUDA_VISIBLE_DEVICES'] = '0,1' DEFAULT_CKPT_PATH = 'qwen/Qwen-VL-Chat' REVISION = 'v1.0.4' BOX_TAG_PATTERN = r"([\s\S]*?)" PUNCTUATION = "!?。"#$%&'()*+,-/:;<=>@[\]^_`{|}~⦅⦆「」、、〃》「」『』【】〔〕〖〗〘〙〚〛〜〝〞〟〰〾〿–—‘’‛“”„‟…‧﹏." def _get_args(): parser = ArgumentParser() parser.add_argument("-c", "--checkpoint-path", type=str, default=DEFAULT_CKPT_PATH, help="Checkpoint name or path, default to %(default)r") parser.add_argument("--revision", type=str, default=REVISION) parser.add_argument("--cpu-only", action="store_true", help="Run demo with CPU only") parser.add_argument("--share", action="store_true", default=False, help="Create a publicly shareable link for the interface.") parser.add_argument("--inbrowser", action="store_true", default=False, help="Automatically launch the interface in a new tab on the default browser.") parser.add_argument("--server-port", type=int, default=8000, help="Demo server port.") parser.add_argument("--server-name", type=str, default="127.0.0.1", help="Demo server name.") args = parser.parse_args() return args def handle_image_submission(_chatbot, task_history, file): if file is None: return _chatbot, task_history # Return if no file is uploaded file_path = save_image(file) history_item = ((file_path,), None) _chatbot.append(history_item) task_history.append(history_item) return predict(_chatbot, task_history) def _load_model_tokenizer(args): model_id = args.checkpoint_path model_dir = snapshot_download(model_id, revision=args.revision) tokenizer = AutoTokenizer.from_pretrained( model_dir, trust_remote_code=True, resume_download=True, ) if args.cpu_only: device_map = "cpu" else: device_map = "auto" model = AutoModelForCausalLM.from_pretrained( model_dir, device_map=device_map, trust_remote_code=True, bf16=True, resume_download=True, ).eval() model.generation_config = GenerationConfig.from_pretrained( model_dir, trust_remote_code=True, resume_download=True, ) return model, tokenizer def _parse_text(text): lines = text.split("\n") lines = [line for line in lines if line != ""] count = 0 for i, line in enumerate(lines): if "```" in line: count += 1 items = line.split("`") if count % 2 == 1: lines[i] = f'
'
            else:
                lines[i] = f"
" else: if i > 0: if count % 2 == 1: line = line.replace("`", r"\`") line = line.replace("<", "<") line = line.replace(">", ">") line = line.replace(" ", " ") line = line.replace("*", "*") line = line.replace("_", "_") line = line.replace("-", "-") line = line.replace(".", ".") line = line.replace("!", "!") line = line.replace("(", "(") line = line.replace(")", ")") line = line.replace("$", "$") lines[i] = "
" + line text = "".join(lines) return text def add_file(history, task_history, file): if file is None: return history, task_history # Return if no file is uploaded file_path = save_image(file) history = history + [((file_path,), None)] task_history = task_history + [((file_path,), None)] return history, task_history def _launch_demo(args, model, tokenizer): uploaded_file_dir = os.environ.get("GRADIO_TEMP_DIR") or str( Path(tempfile.gettempdir()) / "gradio" ) def predict(_chatbot, task_history): if not _chatbot: return _chatbot chat_query = _chatbot[-1][0] if isinstance(chat_query, tuple): query = [{'image': chat_query[0]}] else: query = [{'text': _parse_text(chat_query)}] inputs = tokenizer.from_list_format(query) tokenized_inputs = tokenizer(inputs, return_tensors='pt') tokenized_inputs = tokenized_inputs.to(model.device) pred = model.generate(**tokenized_inputs) response = tokenizer.decode(pred.cpu()[0], skip_special_tokens=False) if 'image' in query[0]: image = tokenizer.draw_bbox_on_latest_picture(response) if image is not None: image_path = save_image(image) _chatbot[-1] = (chat_query, (image_path,)) else: _chatbot[-1] = (chat_query, "No image to display.") else: _chatbot[-1] = (chat_query, response) return _chatbot def save_image(image): if image is None: return None temp_dir = secrets.token_hex(20) temp_dir = Path(uploaded_file_dir) / temp_dir temp_dir.mkdir(exist_ok=True, parents=True) name = f"tmp{secrets.token_hex(5)}.jpg" filename = temp_dir / name image.save(str(filename)) return str(filename) def regenerate(_chatbot, task_history): if not task_history: return _chatbot item = task_history[-1] if item[1] is None: return _chatbot task_history[-1] = (item[0], None) chatbot_item = _chatbot.pop(-1) if chatbot_item[0] is None: _chatbot[-1] = (_chatbot[-1][0], None) else: _chatbot.append((chatbot_item[0], None)) return predict(_chatbot, task_history) def add_text(history, task_history, text): task_text = text if len(text) >= 2 and text[-1] in PUNCTUATION and text[-2] not in PUNCTUATION: task_text = text[:-1] history = history + [(_parse_text(text), None)] task_history = task_history + [(task_text, None)] return history, task_history, "" def add_file(history, task_history, file): if file is None: return history, task_history # Return if no file is uploaded file_path = file.name history = history + [((file.name,), None)] task_history = task_history + [((file.name,), None)] return history, task_history def reset_user_input(): return gr.update(value="") def process_response(response): response = response.replace("", "").replace(r"", "") response = re.sub(BOX_TAG_PATTERN, "", response) return response def process_history_for_model(task_history): processed_history = [] for query, response in task_history: if isinstance(query, tuple): query = {'image': query[0]} else: query = {'text': query} response = response or "" processed_history.append((query, response)) return processed_history def reset_state(task_history): task_history.clear() return [] with gr.Blocks() as demo: gr.Markdown("""# Welcome to Tonic's Qwen-VL-Chat Bot""") gr.Markdown( """ Qwen-VL-Chat is a multimodal input model. 本WebUI基于Qwen-VL-Chat打造,实现聊天机器人功能 但我必须修复它这么多也许我也得到一些荣誉 You can use this Space to test out the current model [qwen/Qwen-VL-Chat](https://huggingface.co/qwen/Qwen-VL-Chat) You can also use 🧑🏻‍🚀qwen/Qwen-VL-Chat🚀 by cloning this space. 🧬🔬🔍 Simply click here: Duplicate Space Join us : 🌟TeamTonic🌟 is always making cool demos! Join our active builder's🛠️community on 👻Discord: [Discord](https://discord.gg/nXx5wbX9) On 🤗Huggingface: [TeamTonic](https://huggingface.co/TeamTonic) & [MultiTransformer](https://huggingface.co/MultiTransformer) On 🌐Github: [Polytonic](https://github.com/tonic-ai) & contribute to 🌟 [PolyGPT](https://github.com/tonic-ai/polygpt-alpha) """) with gr.Row(): with gr.Column(scale=1): chatbot = gr.Chatbot(label='Qwen-VL-Chat') with gr.Column(scale=1): with gr.Row(): query = gr.Textbox(lines=2, label='Input', placeholder="Type your message here...") submit_btn = gr.Button("🚀 Submit") with gr.Row(): file_upload = gr.UploadButton("📁 Upload Image", file_types=["image"]) submit_file_btn = gr.Button("Submit Image") regen_btn = gr.Button("🤔️ Regenerate") empty_bin = gr.Button("🧹 Clear History") task_history = gr.State([]) submit_btn.click( fn=predict, inputs=[chatbot, task_history], outputs=[chatbot] ) submit_file_btn.click( fn=handle_image_submission, inputs=[chatbot, task_history, file_upload], outputs=[chatbot, task_history] ) regen_btn.click( fn=regenerate, inputs=[chatbot, task_history], outputs=[chatbot] ) empty_bin.click( fn=reset_state, inputs=[task_history], outputs=[task_history] ) query.submit( fn=add_text, inputs=[chatbot, task_history, query], outputs=[chatbot, task_history, query] ) gr.Markdown(""" Note: This demo is governed by the original license of Qwen-VL. We strongly advise users not to knowingly generate or allow others to knowingly generate harmful content, including hate speech, violence, pornography, deception, etc. (注:本演示受Qwen-VL的许可协议限制。我们强烈建议,用户不应传播及不应允许他人传播以下内容, 包括但不限于仇恨言论、暴力、色情、欺诈相关的有害信息。)""") demo.queue().launch() def main(): args = _get_args() model, tokenizer = _load_model_tokenizer(args) _launch_demo(args, model, tokenizer) if __name__ == '__main__': main()