import gradio as gr from transformers import AutoModelForCausalLM, AutoTokenizer @gr.cache(allow_output_mutation=True) def load_model(): model_id = "Tech-Meld/Hajax_Chat_1.0" tokenizer = AutoTokenizer.from_pretrained(model_id) model = AutoModelForCausalLM.from_pretrained(model_id) return model, tokenizer def get_response(input_text, model, tokenizer): inputs = tokenizer.encode(input_text + tokenizer.eos_token, return_tensors='pt') outputs = model.generate(inputs, max_length=1000, pad_token_id=tokenizer.eos_token_id) response = tokenizer.decode(outputs[:, inputs.shape[-1]:][0], skip_special_tokens=True) return response model, tokenizer = load_model() def chat(input_text): response = get_response(input_text, model, tokenizer) return response iface = gr.Interface( chat, "text", "text", title="Chat with Hajax", description="Type your message and press Enter to chat with the AI.", ) iface.launch()