File size: 5,977 Bytes
dd6c56a
8bb39cb
 
7730f68
dd6c56a
 
 
 
 
 
5796c7a
 
dd6c56a
 
 
5796c7a
 
dd6c56a
 
8bb39cb
5796c7a
 
 
3b422da
8bb39cb
 
 
 
5796c7a
 
 
 
 
 
3b422da
5796c7a
 
8bb39cb
 
 
 
 
 
5796c7a
 
 
 
 
 
 
 
 
 
8bb39cb
5796c7a
 
 
dd6c56a
3b422da
dd6c56a
 
 
 
 
 
 
 
 
 
 
 
8bb39cb
dd6c56a
8bb39cb
dd6c56a
241160e
dd6c56a
 
 
 
 
 
 
 
 
 
 
 
 
 
5796c7a
 
dd6c56a
 
 
 
 
 
 
 
 
 
 
8bb39cb
 
 
 
 
dd6c56a
8bb39cb
 
dd6c56a
 
 
 
 
8bb39cb
dd6c56a
 
 
 
8bb39cb
dd6c56a
 
 
 
 
 
 
 
 
 
8bb39cb
5796c7a
 
8bb39cb
 
5796c7a
 
 
 
 
 
 
dd6c56a
8bb39cb
dd6c56a
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
import gradio as gr
from transformers import AutoModel, AutoTokenizer, pipeline, AutoConfig, AutoModelForCausalLM
from huggingface_hub import cached_download, hf_hub_url, list_models, create_repo, HfApi
from transformers.modeling_utils import PreTrainedModel
import requests
import json
import os
import matplotlib.pyplot as plt
from io import BytesIO
import base64
import torch
from torch.nn.utils import prune

# Function to fetch open-weight LLM models
def fetch_open_weight_models():
    models = list_models()
    return models

# Function to prune a model using the "merge-kit" approach
def prune_model(llm_model_name, target_size, hf_write_token, repo_name):
    try:
        # Load the LLM model and tokenizer
        llm_tokenizer = AutoTokenizer.from_pretrained(llm_model_name)
        # Handle cases where the model is split into multiple safetensors
        llm_model = AutoModelForCausalLM.from_pretrained(
            llm_model_name,
            torch_dtype=torch.float16,  # Adjust dtype as needed
        )

        # Get the model config
        config = AutoConfig.from_pretrained(llm_model_name)
        # Calculate the target number of parameters
        target_num_parameters = int(config.num_parameters * (target_size / 100))

        # Use merge-kit to prune the model
        pruned_model = merge_kit_prune(llm_model, target_num_parameters)

        # Save the pruned model to Hugging Face repository
        api = HfApi()
        repo_id = f"{hf_write_token}/{repo_name}"
        create_repo(repo_id, token=hf_write_token, private=False, exist_ok=True)
        pruned_model.push_to_hub(repo_id, use_auth_token=hf_write_token)
        llm_tokenizer.push_to_hub(repo_id, use_auth_token=hf_write_token)

        # Create a visualization
        fig, ax = plt.subplots(figsize=(10, 5))
        ax.bar(["Original", "Pruned"], [config.num_parameters, pruned_model.num_parameters])
        ax.set_ylabel("Number of Parameters")
        ax.set_title("Model Size Comparison")
        buf = BytesIO()
        fig.savefig(buf, format="png")
        buf.seek(0)
        image_base64 = base64.b64encode(buf.read()).decode("utf-8")
        return f"Pruned model saved to Hugging Face Hub in repository {repo_id}", f"data:image/png;base64,{image_base64}"

    except Exception as e:
        return f"Error: {e}", None

# Merge-kit Pruning Function (adjust as needed)
def merge_kit_prune(model: PreTrainedModel, target_num_parameters: int) -> PreTrainedModel:
    """Prunes a model using a merge-kit approach.
    Args:
        model (PreTrainedModel): The model to be pruned.
        target_num_parameters (int): The target number of parameters after pruning.
    Returns:
        PreTrainedModel: The pruned model.
    """
    # Define the pruning method
    pruning_method = "unstructured"

    # Calculate the pruning amount
    amount = 1 - (target_num_parameters / sum(p.numel() for p in model.parameters()))

    # Prune the model using the selected method
    for name, module in model.named_modules():
        if isinstance(module, (torch.nn.Linear, torch.nn.Conv2d)): 
            prune.random_unstructured(module, name="weight", amount=amount)

    # Remove the pruned weights
    for name, module in model.named_modules():
        if isinstance(module, (torch.nn.Linear, torch.nn.Conv2d)):
            prune.remove(module, name="weight")

    return model

# Function to create a Gradio interface
def create_interface():
    with gr.Blocks() as demo:
        gr.Markdown("## Create a Smaller LLM")

        # Input for model name
        llm_model_name = gr.Textbox(label="Choose a Large Language Model", placeholder="Enter the model name", interactive=True)

        # Input for target model size
        target_size = gr.Slider(
            label="Target Model Size (%)",
            minimum=1,
            maximum=100,
            step=1,
            value=50,
            interactive=True,
        )

        # Input for Hugging Face write token
        hf_write_token = gr.Textbox(label="Hugging Face Write Token", placeholder="Enter your HF write token", interactive=True, type="password")

        # Input for repository name
        repo_name = gr.Textbox(label="Repository Name", placeholder="Enter the name of the repository", interactive=True)

        # Output for pruning status
        pruning_status = gr.Textbox(label="Pruning Status", interactive=False)

        # Button to start pruning
        prune_button = gr.Button("Prune Model")

        # Output for visualization
        visualization = gr.Image(label="Model Size Comparison", interactive=False)

        # Connect components
        prune_button.click(
            fn=prune_model,
            inputs=[llm_model_name, target_size, hf_write_token, repo_name],
            outputs=[pruning_status, visualization],
        )

        # Example usage of the pruned model (optional)
        text_input = gr.Textbox(label="Input Text")
        text_output = gr.Textbox(label="Generated Text")

        # Generate text button
        generate_button = gr.Button("Generate Text")

        def generate_text(text, repo_name):
            try:
                # Load the pruned model and tokenizer
                tokenizer = AutoTokenizer.from_pretrained(repo_name, use_auth_token=hf_write_token)
                model = AutoModelForCausalLM.from_pretrained(repo_name, use_auth_token=hf_write_token)

                # Use the pipeline for text generation
                generator = pipeline("text-generation", model=model, tokenizer=tokenizer)
                generated_text = generator(text, max_length=50, num_beams=5, num_return_sequences=1)[0]["generated_text"]
                return generated_text
            except Exception as e:
                return f"Error: {e}"

        generate_button.click(fn=generate_text, inputs=[text_input, repo_name], outputs=text_output)

    return demo

# Create and launch the Gradio interface
demo = create_interface()
demo.launch(share=True)