Spaces:
Runtime error
Runtime error
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,98 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM
|
3 |
+
from playwright.sync_api import sync_playwright
|
4 |
+
from flax import linen as nn
|
5 |
+
from jax import random
|
6 |
+
import jax
|
7 |
+
import jax.numpy as jnp
|
8 |
+
|
9 |
+
# Define LLaVA model parameters
|
10 |
+
MODEL_NAME = "HuggingFaceH4/zephyr-7b-beta"
|
11 |
+
MAX_LENGTH = 512
|
12 |
+
NUM_BEAMS = 5
|
13 |
+
|
14 |
+
# Define Flax model for action generation
|
15 |
+
class ActionModel(nn.Module):
|
16 |
+
vocab_size: int
|
17 |
+
hidden_size: int
|
18 |
+
num_layers: int
|
19 |
+
|
20 |
+
def setup(self):
|
21 |
+
self.embedding = nn.Embed(self.vocab_size, self.hidden_size)
|
22 |
+
self.lstm = nn.LSTM(self.hidden_size, self.hidden_size, num_layers=self.num_layers)
|
23 |
+
self.dense = nn.Dense(self.vocab_size)
|
24 |
+
|
25 |
+
def __call__(self, inputs, init_state):
|
26 |
+
embedded = self.embedding(inputs)
|
27 |
+
output, new_state = self.lstm(embedded, init_state)
|
28 |
+
logits = self.dense(output)
|
29 |
+
return logits, new_state
|
30 |
+
|
31 |
+
# Initialize Flax model
|
32 |
+
vocab_size = 50257
|
33 |
+
hidden_size = 1024
|
34 |
+
num_layers = 2
|
35 |
+
key = random.PRNGKey(0)
|
36 |
+
model = ActionModel(vocab_size, hidden_size, num_layers)
|
37 |
+
init_state = model.lstm.initialize_carry(key, (1, hidden_size))
|
38 |
+
|
39 |
+
# Function to generate actions using LLaVA model
|
40 |
+
def generate_actions(input_text, browser, page):
|
41 |
+
# Load LLaVA model
|
42 |
+
tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME)
|
43 |
+
model = AutoModelForCausalLM.from_pretrained(MODEL_NAME)
|
44 |
+
|
45 |
+
# Prepare input for LLaVA
|
46 |
+
inputs = tokenizer(input_text, return_tensors="pt")
|
47 |
+
inputs = inputs.to(model.device)
|
48 |
+
|
49 |
+
# Generate response
|
50 |
+
outputs = model.generate(
|
51 |
+
input_ids=inputs.input_ids,
|
52 |
+
max_length=MAX_LENGTH,
|
53 |
+
num_beams=NUM_BEAMS,
|
54 |
+
temperature=0.7,
|
55 |
+
)
|
56 |
+
|
57 |
+
# Decode response and extract actions
|
58 |
+
response = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
59 |
+
actions = response.split("\n")
|
60 |
+
|
61 |
+
# Perform actions
|
62 |
+
for action in actions:
|
63 |
+
if "open website" in action:
|
64 |
+
website = action.split(" ")[-1]
|
65 |
+
page.goto(website)
|
66 |
+
elif "click" in action:
|
67 |
+
selector = action.split(" ")[-1]
|
68 |
+
page.click(selector)
|
69 |
+
elif "type" in action:
|
70 |
+
text = action.split(" ")[-1]
|
71 |
+
page.type(text)
|
72 |
+
elif "submit" in action:
|
73 |
+
page.press("Enter")
|
74 |
+
else:
|
75 |
+
print(f"Action not recognized: {action}")
|
76 |
+
|
77 |
+
# Function to initialize browser and page
|
78 |
+
def initialize_browser():
|
79 |
+
with sync_playwright() as p:
|
80 |
+
browser = p.chromium.launch()
|
81 |
+
page = browser.new_page()
|
82 |
+
return browser, page
|
83 |
+
|
84 |
+
# Gradio interface
|
85 |
+
def run_agent(input_text):
|
86 |
+
with sync_playwright() as p:
|
87 |
+
browser, page = initialize_browser()
|
88 |
+
generate_actions(input_text, browser, page)
|
89 |
+
return f"Successfully executed actions based on: {input_text}"
|
90 |
+
|
91 |
+
iface = gr.Interface(
|
92 |
+
fn=run_agent,
|
93 |
+
inputs=gr.Textbox(label="Enter your request"),
|
94 |
+
outputs=gr.Textbox(label="Response"),
|
95 |
+
title="Automated Agent",
|
96 |
+
description="Enter a task or instruction for the agent to perform."
|
97 |
+
)
|
98 |
+
iface.launch()
|