File size: 10,186 Bytes
74d4655
 
 
 
 
 
 
59c6d5c
 
74d4655
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
59c6d5c
74d4655
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
import torch
from torch.nn.utils.rnn import pack_padded_sequence, pad_packed_sequence
import torch.nn.functional as F
import torch.nn as nn
import torch.optim as optim
from .chat_dataset import ChatDataset
from .attention import LuongAttention
from .custom_types import Method
from .constants import BOS_TOKEN
from .vocab import Vocab
from .searchers import GreedySearch
import os
import random
from tqdm import tqdm


class Seq2SeqEncoder(nn.Module):
    def __init__(self, input_size: int, hidden_size: int, num_layers: int, embedding: nn.Embedding):
        super().__init__()
        self.input_size = input_size
        self.hidden_size = hidden_size
        self.num_layers = num_layers
        
        self.embedding = embedding
        self.rnn = nn.GRU(input_size, hidden_size, num_layers=num_layers, bidirectional=True, batch_first=True) # batch_first is True, because I don't approve self-harm

    def forward(self, x, lengths):
        x = self.embedding(x) # Output shape: (batch_size, max_len_in_batch, hidden_size)
        packed_embedded = pack_padded_sequence(x, lengths.cpu(), batch_first=True, enforce_sorted=False)
        outputs, hidden = self.rnn(packed_embedded)
        outputs, _ = pad_packed_sequence(outputs, batch_first=True)
        return outputs[:, :, :self.hidden_size] + outputs[:, :, self.hidden_size:], hidden


class Seq2SeqDecoder(nn.Module):
    def __init__(self, input_size: int, hidden_size: int, output_size: int, num_layers: int, attn, embedding: nn.Embedding, dropout: int = 0.1):
        super().__init__()
        self.input_size = input_size
        self.hidden_size = hidden_size
        self.output_size = output_size
        self.num_layers = num_layers
        
        self.attn = attn
        self.embedding = embedding
        self.embedding_dropout = nn.Dropout(dropout)
        self.rnn = nn.GRU(input_size, hidden_size, num_layers=num_layers, batch_first=True)

        self.concat = nn.Linear(hidden_size * 2, hidden_size)
        self.out = nn.Linear(hidden_size, output_size)

    def forward(self, x, last_hidden, encoder_outputs):
        embedded = self.embedding(x)
        embedded = self.embedding_dropout(embedded)
        decoder_outputs, hidden = self.rnn(embedded, last_hidden)
        attn_weights = self.attn(decoder_outputs, encoder_outputs)

        context = attn_weights.bmm(encoder_outputs).squeeze(1)

        concat_input = torch.cat((decoder_outputs.squeeze(1), context), 1)
        concat_output = torch.tanh(self.concat(concat_input))
        output = self.out(concat_output)

        output = F.softmax(output, dim=1)
        return output, hidden


class Seq2SeqChatbot(nn.Module):
    def __init__(self, hidden_size: int, vocab_size: int, encoder_num_layers: int, decoder_num_layers: int, decoder_embedding_dropout: float, device: torch.device):
        super().__init__()
        self.hidden_size = hidden_size
        self.encoder_num_layers = encoder_num_layers
        self.decoder_num_layers = decoder_num_layers
        self.decoder_embedding_dropout = decoder_embedding_dropout
        self.vocab_size = vocab_size
        self.epoch = 0

        self.device = device
        self.vocab = Vocab([])
        self.embedding = nn.Embedding(vocab_size, hidden_size)
        self.attn = LuongAttention(Method.DOT, hidden_size)
        self.encoder = Seq2SeqEncoder(hidden_size, hidden_size, encoder_num_layers, self.embedding)
        self.decoder = Seq2SeqDecoder(hidden_size, hidden_size, vocab_size, decoder_num_layers, self.attn, self.embedding, decoder_embedding_dropout)
        self.encoder_optimizer = optim.Adam(self.encoder.parameters())
        self.decoder_optimizer = optim.Adam(self.decoder.parameters())
        self.searcher = GreedySearch(self.encoder, self.decoder, self.embedding, device)
        self.to(device)
        self.eval_mode()

    def train(self, epochs, train_data, teacher_forcing_ratio, device, save_dir, model_name, clip, save_every):
        def maskNLLLoss(inp, target, mask):
            crossEntropy = -torch.log(torch.gather(inp, 1, target.view(-1, 1)).squeeze(1))
            loss = crossEntropy.masked_select(mask).mean()
            loss = loss.to(device)
            return loss
        
        epoch_progress = tqdm(range(self.epoch, self.epoch + epochs), desc="Training", unit="epoch", leave=True)
        epoch_progress.set_description(f"maskNLLLoss: None")
        
        for epoch in epoch_progress:
            for x_train, y_train, x_lengths, y_mask in train_data:
                self.encoder_optimizer.zero_grad()
                self.decoder_optimizer.zero_grad()
                # Squeeze because batches are made in dataset and DataLoader is only for shuffling
                x_train = x_train.squeeze(0).to(device)
                y_train = y_train.squeeze(0).to(device)
                x_lengths = x_lengths.squeeze(0) # Lengths are computed on CPU
                y_mask = y_mask.squeeze(0).to(device)
        
                encoder_outputs, hidden = self.encoder(x_train, x_lengths) # Output shape: (batch_size, max_len_in_batch, hidden_size)
                hidden = hidden[:self.decoder_num_layers]
                loss = 0
                decoder_input = torch.LongTensor([[BOS_TOKEN] for _ in range(y_train.shape[0])])
                decoder_input = decoder_input.to(device)
                use_teacher_forcing = random.random() < teacher_forcing_ratio
                if use_teacher_forcing:
                    for t in range(y_train.shape[1]): # Process words in all batches for timestep t
                        decoder_outputs, hidden = self.decoder(decoder_input, hidden, encoder_outputs)
                        decoder_input = y_train[:, t].unsqueeze(1)
                        mask_loss = maskNLLLoss(decoder_outputs, y_train[:, t], y_mask[:, t])
                        loss += mask_loss
                else:
                    for t in range(y_train.shape[1]):
                        decoder_outputs, hidden = self.decoder(decoder_input, hidden, encoder_outputs)
                        decoder_input = torch.argmax(decoder_outputs, dim=1).unsqueeze(1)
                        mask_loss = maskNLLLoss(decoder_outputs, y_train[:, t], y_mask[:, t])
                        loss += mask_loss
        
                loss.backward()
        
                _ = nn.utils.clip_grad_norm_(self.encoder.parameters(), clip)
                _ = nn.utils.clip_grad_norm_(self.decoder.parameters(), clip)
        
                self.encoder_optimizer.step()
                self.decoder_optimizer.step()
        
            if (epoch % save_every == 0 and epoch != 0) or epoch == save_every - 1:
                directory = os.path.join(save_dir, model_name, '{}-{}'.format(self.encoder_num_layers, self.decoder_num_layers, self.hidden_size))
                if not os.path.exists(directory):
                    os.makedirs(directory)
                torch.save({
                    'epoch': epoch + self.epoch,
                    'en': self.encoder.state_dict(),
                    'de': self.decoder.state_dict(),
                    'en_opt': self.encoder_optimizer.state_dict(),
                    'de_opt': self.decoder_optimizer.state_dict(),
                    'loss': loss,
                    'voc_dict': self.vocab.__dict__,
                    'embedding': self.embedding.state_dict()
                }, os.path.join(directory, '{}_{}.tar'.format(epoch, 'checkpoint')))
            
            epoch_progress.set_description(f"maskNLLLoss: {loss:.8f}")
    
    def to(self, device):
        self.encoder = self.encoder.to(device)
        self.decoder = self.decoder.to(device)
        self.embedding = self.embedding.to(device)
        self.attn = self.attn.to(device)

    def train_mode(self):
        self.encoder.train()
        self.decoder.train()
        self.embedding.train()
        self.attn.train()

    def eval_mode(self):
        self.encoder.eval()
        self.decoder.eval()
        self.embedding.eval()
        self.attn.eval()

    def load_checkpoint(self, checkpoint_path: str):
        checkpoint = torch.load(checkpoint_path, map_location=self.device, weights_only=False)
        encoder_sd = checkpoint["en"]
        decoder_sd = checkpoint["de"]
        embedding_sd = checkpoint["embedding"]
        self.vocab.__dict__ = checkpoint["voc_dict"]
        encoder_optimizer_sd = checkpoint["en_opt"]
        decoder_optimizer_sd = checkpoint["de_opt"]
        self.epoch = checkpoint["epoch"]

        self.encoder_optimizer.load_state_dict(encoder_optimizer_sd)
        self.decoder_optimizer.load_state_dict(decoder_optimizer_sd)
        self.embedding.load_state_dict(embedding_sd)
        self.encoder.load_state_dict(encoder_sd)
        self.decoder.load_state_dict(decoder_sd)

    def forward(self, input_seq: str):
        input_seq = ChatDataset._ChatDataset__normalize(input_seq)
        input_seq = self.vocab.sentence_indices(input_seq + ["<eos>"]).unsqueeze(0).to(self.device)
        output, _ = self.searcher(input_seq, torch.tensor(input_seq.shape[1]).view(1), 10)
        output = [self.vocab.index2word[i.item()] for i in output]
        output = [word for word in output if word not in ("<bos>", "<eos>", "<pad>")]
        return " ".join(output)
    

if __name__ == "__main__": # Run as module
    from .chat_dataset import ChatDataset
    import torch.utils.data as data

    CHAT_HISTORY_PATH = "models/seq2seq/data/train/chat_history.json"
    batch_size = 20
    chat_dataset = ChatDataset(CHAT_HISTORY_PATH, max_message_count=10_000, batch_size=batch_size)
    train_data = data.DataLoader(chat_dataset, batch_size=1, shuffle=True)

    device = torch.device("cpu")
    chatbot = Seq2SeqChatbot(500, chat_dataset.vocab.size, 2, 2, 0.1, device)
    chatbot.load_checkpoint("models/seq2seq/checkpoint/150_checkpoint.tar")
    chatbot.train_mode()
    chatbot.train(3, train_data, 0.5, device, "./checkpoint/temp/", "frantics_fox", 50.0, 100)