import torch import torch.nn.functional as F import torch.nn as nn from .custom_types import Method class LuongAttention(nn.Module): def __init__(self, method: Method, hidden_size: int): super().__init__() self.hidden_size = hidden_size if not isinstance(method, Method): raise ValueError(method, f"should be a member of `Method` enum") match method: case Method.DOT: self.method = self.dot case Method.GENERAL: self.method = self.general self.Wa = nn.Linear(hidden_size, hidden_size) case Method.CONCAT: self.method = self.concat self.Wa = nn.Linear(hidden_size * 2, hidden_size) self.Va = nn.Parameter(torch.FloatTensor(1, hidden_size)) def dot(self, hidden, encoder_outputs): return torch.sum(hidden * encoder_outputs, dim=2) def general(self, hidden, encoder_outputs): return torch.sum(hidden * self.Wa(encoder_outputs), dim=2) def concat(self, hidden, encoder_outputs): hidden = hidden.permute(1, 0, 2) energy = self.Wa(torch.cat((hidden.permute(1, 0, 2).expand(-1, encoder_outputs.size(1), -1), encoder_outputs), 2)).tanh() return torch.sum(self.Va * energy, dim=2) def forward(self, hidden, encoder_outputs): attn_weights = self.method(hidden, encoder_outputs) return F.softmax(attn_weights, dim=1).unsqueeze(1)