import torch import torch.nn as nn from .constants import BOS_TOKEN class GreedySearch(nn.Module): def __init__(self, encoder, decoder, embedding, device): super().__init__() self.encoder = encoder self.decoder = decoder self.embedding = embedding self.device = device def forward(self, x, input_length, max_length): encoder_outputs, hidden = self.encoder(x, input_length) decoder_hidden = hidden[:self.decoder.num_layers] decoder_input = torch.ones(1, 1, device=self.device, dtype=torch.long) * BOS_TOKEN all_tokens = torch.zeros([0], device=self.device, dtype=torch.long) all_scores = torch.zeros([0], device=self.device) for _ in range(max_length): decoder_outputs, decoder_hidden = self.decoder(decoder_input, decoder_hidden, encoder_outputs) decoder_scores, decoder_input = torch.max(decoder_outputs, dim=1) all_tokens = torch.cat((all_tokens, decoder_input), dim=0) all_scores = torch.cat((all_scores, decoder_scores), dim=0) decoder_input.unsqueeze_(0) return all_tokens, all_scores