Spaces:
Sleeping
Sleeping
import os | |
import pandas as pd | |
import json | |
import ast | |
import gradio as gr | |
from openai import AzureOpenAI | |
from PyPDF2 import PdfReader | |
from gradio.themes.base import Base | |
from gradio.themes.utils import colors, fonts, sizes | |
import base64 | |
class BaseTheme(Base): | |
def __init__( | |
self, | |
*, | |
primary_hue: colors.Color | str = colors.orange, | |
secondary_hue: colors.Color | str = colors.blue, | |
neutral_hue: colors.Color | str = colors.gray, | |
spacing_size: sizes.Size | str = sizes.spacing_md, | |
radius_size: sizes.Size | str = sizes.radius_md, | |
text_size: sizes.Size | str = sizes.text_lg, | |
): | |
super().__init__( | |
primary_hue=primary_hue, | |
secondary_hue=secondary_hue, | |
neutral_hue=neutral_hue, | |
spacing_size=spacing_size, | |
radius_size=radius_size, | |
text_size=text_size, | |
) | |
basetheme = BaseTheme() | |
js_func = """ | |
function refresh() { | |
const url = new URL(window.location); | |
if (url.searchParams.get('__theme') !== 'dark') { | |
url.searchParams.set('__theme', 'dark'); | |
window.location.href = url.href; | |
} | |
} | |
""" | |
# Azure OpenAI setup | |
os.environ["AZURE_OPENAI_ENDPOINT"] = os.getenv("AZURE_OPENAI_ENDPOINT") | |
os.environ["AZURE_OPENAI_API_KEY"] = os.getenv("AZURE_OPENAI_API_KEY") | |
deployment = os.getenv("AZURE_OPENAI_AI_DEPLOYMENT") | |
client = AzureOpenAI( | |
api_version="2023-05-15", | |
azure_deployment=deployment, | |
) | |
# Step 1: Read files and collect column names and first rows | |
def read_file_metadata(file_path): | |
df = pd.read_csv(file_path) | |
column_names = list(df.columns) | |
first_row = df.iloc[0].to_dict() # Convert first row to a dictionary | |
return column_names, first_row | |
# Step 2: Create the prompt for column mapping | |
def create_column_mapping_prompt(metadata): | |
prompt = ( | |
"You are given CSV data from different sources, where column names for similar data vary slightly. " | |
"Your task is to suggest mappings to unify columns with similar content under a single name.\n\n" | |
) | |
for i, (file_path, column_names, first_row) in enumerate(metadata): | |
prompt += f"Data from {file_path}:\n" | |
prompt += f"Column names: {column_names}\n" | |
prompt += f"Example row: {first_row}\n\n" | |
prompt += "Suggest mappings to standardize the columns across these files. Please return in JSON format." | |
return prompt | |
# Step 3: Call the LLM to get the column mapping | |
def get_column_mapping(file_metadata): | |
column_match_prompt = create_column_mapping_prompt(file_metadata) | |
completion = client.chat.completions.create( | |
model="gpt-4o", | |
messages=[{"role": "user", "content": column_match_prompt}], | |
temperature=0.1, | |
response_format={"type": "json_object"}, | |
) | |
print(completion.choices[0].message.content) | |
result_dict = ast.literal_eval(completion.choices[0].message.content) | |
return result_dict | |
# Step 4: Apply the mapping and merge data | |
def merge_files_with_mapping(file_paths): | |
file_metadata = [] | |
for file_path in file_paths: | |
column_names, first_row = read_file_metadata(file_path) | |
file_metadata.append((file_path, column_names, first_row)) | |
result_dict = get_column_mapping(file_metadata) | |
all_data = [] | |
for file_path in file_paths: | |
df = pd.read_csv(file_path) | |
df.rename(columns=result_dict, inplace=True) | |
all_data.append(df) | |
final_df = pd.concat(all_data, ignore_index=True) | |
final_df.to_csv("merged_data.csv", index=False) | |
return final_df | |
# Step 5: Extract text from PDF | |
def extract_text_from_pdf(pdf_path): | |
reader = PdfReader(pdf_path) | |
text = "" | |
for page in reader.pages: | |
text += page.extract_text() or "" | |
return text | |
# Step 6: Call the LLM for PDF data mapping | |
def map_pdf_to_csv_structure(pdf_path, csv_df): | |
pdf_text = extract_text_from_pdf(pdf_path) | |
column_headers = list(csv_df.columns) | |
first_row_data = csv_df.iloc[0].to_dict() | |
prompt = f""" | |
Based on the following document text extracted from a government project in Thailand: | |
{pdf_text} | |
Please map the information to JSON format using the following structure: | |
Column Headers: {column_headers} | |
Example Data (from the first row of the CSV): {first_row_data} | |
Use the column headers as keys and fill in values based on the information from the document. | |
If a key is not applicable or data is missing, leave the value as an empty string. | |
Return only JSON with no additional explanations or modifications. | |
""" | |
completion = client.chat.completions.create( | |
model="gpt-4o", | |
messages=[{"role": "user", "content": prompt}], | |
temperature=0.1, | |
response_format={"type": "json_object"}, | |
) | |
result_dict = ast.literal_eval(completion.choices[0].message.content) | |
new_data_df = pd.DataFrame([result_dict]) | |
return new_data_df | |
# Step 7: Combine all data and save as final merged CSV | |
def combine_all_data(csv_files, pdf_file): | |
merged_csv_df = merge_files_with_mapping(csv_files) | |
pdf_data_df = map_pdf_to_csv_structure(pdf_file, merged_csv_df) | |
final_df = pd.concat([merged_csv_df, pdf_data_df], ignore_index=True) | |
final_df.to_csv("merged_all_data.csv", index=False) | |
return final_df | |
# Gradio interface | |
def process_data(csv_files, pdf_file): | |
final_df = combine_all_data(csv_files, pdf_file) | |
return final_df | |
# Convert the images to Base64 | |
with open("Frame 1.png", "rb") as logo_file: | |
base64_logo = base64.b64encode(logo_file.read()).decode("utf-8") | |
# Gradio app | |
with gr.Blocks(title="AI Data Transformation (AI can make mistakes)",theme=basetheme,js=js_func) as demo: | |
# Add logo at the top using Base64 HTML | |
with gr.Row(): | |
gr.HTML( | |
f""" | |
<div style="display: grid; grid-template-columns: 1fr 2fr 1fr; align-items: center;"> | |
<div style="justify-self: start;"> | |
<img src="data:image/png;base64,{base64_logo}" alt="Logo" style="width: 150px; height: auto;"> | |
</div> | |
<div style="justify-self: center;"> | |
<h2 style="margin: 0; text-align: center;">AI Data Transformation (AI can make mistakes)</h2> | |
</div> | |
<div></div> | |
</div> | |
""" | |
) | |
# Gradio UI | |
gr.Interface( | |
fn=process_data, | |
inputs=[ | |
gr.File(label="Upload CSV files", file_count="multiple"), | |
gr.File(label="Upload PDF file") | |
], | |
outputs=gr.Dataframe(label="Final Merged Data (AI can make mistakes)") | |
) | |
demo.launch() | |