Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,7 +1,6 @@
|
|
1 |
import os
|
2 |
import pandas as pd
|
3 |
import json
|
4 |
-
import ast
|
5 |
import gradio as gr
|
6 |
from openai import AzureOpenAI
|
7 |
from PyPDF2 import PdfReader
|
@@ -41,123 +40,250 @@ function refresh() {
|
|
41 |
}
|
42 |
}
|
43 |
"""
|
44 |
-
|
45 |
# Azure OpenAI setup
|
|
|
46 |
os.environ["AZURE_OPENAI_ENDPOINT"] = os.getenv("AZURE_OPENAI_ENDPOINT")
|
47 |
os.environ["AZURE_OPENAI_API_KEY"] = os.getenv("AZURE_OPENAI_API_KEY")
|
48 |
-
deployment = os.getenv("AZURE_OPENAI_AI_DEPLOYMENT")
|
49 |
|
50 |
client = AzureOpenAI(
|
51 |
api_version="2023-05-15",
|
52 |
-
azure_deployment=deployment
|
53 |
)
|
54 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
55 |
def read_file_metadata(file_path):
|
56 |
df = pd.read_csv(file_path)
|
57 |
column_names = list(df.columns)
|
58 |
-
|
59 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
60 |
|
61 |
-
|
62 |
-
def create_column_mapping_prompt(metadata):
|
63 |
prompt = (
|
64 |
-
"You are given CSV data from different sources
|
65 |
-
"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
66 |
)
|
67 |
-
for i, (file_path, column_names, first_row) in enumerate(metadata):
|
68 |
-
prompt += f"Data from {file_path}:\n"
|
69 |
-
prompt += f"Column names: {column_names}\n"
|
70 |
-
prompt += f"Example row: {first_row}\n\n"
|
71 |
-
prompt += "Suggest mappings to standardize the columns across these files. Please return in JSON format."
|
72 |
return prompt
|
73 |
|
74 |
-
|
75 |
-
|
76 |
-
column_match_prompt = create_column_mapping_prompt(file_metadata)
|
77 |
completion = client.chat.completions.create(
|
78 |
model="gpt-4o",
|
79 |
messages=[{"role": "user", "content": column_match_prompt}],
|
80 |
-
temperature=0,
|
81 |
response_format={"type": "json_object"},
|
82 |
)
|
83 |
-
print(completion.choices[0].message.content)
|
84 |
-
result_dict = ast.literal_eval(completion.choices[0].message.content)
|
85 |
-
return result_dict
|
86 |
|
87 |
-
|
88 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
89 |
file_metadata = []
|
90 |
for file_path in file_paths:
|
91 |
-
|
92 |
-
|
|
|
|
|
|
|
|
|
|
|
93 |
|
94 |
-
|
|
|
95 |
|
96 |
all_data = []
|
97 |
for file_path in file_paths:
|
98 |
-
|
99 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
100 |
all_data.append(df)
|
101 |
|
|
|
|
|
|
|
102 |
final_df = pd.concat(all_data, ignore_index=True)
|
|
|
|
|
|
|
|
|
103 |
final_df.to_csv("merged_data.csv", index=False)
|
104 |
return final_df
|
105 |
|
106 |
-
# Step 5: Extract text from PDF
|
107 |
def extract_text_from_pdf(pdf_path):
|
108 |
reader = PdfReader(pdf_path)
|
109 |
text = ""
|
110 |
for page in reader.pages:
|
111 |
-
|
|
|
|
|
112 |
return text
|
113 |
|
114 |
-
|
115 |
-
def map_pdf_to_csv_structure(pdf_path, csv_df):
|
116 |
pdf_text = extract_text_from_pdf(pdf_path)
|
117 |
column_headers = list(csv_df.columns)
|
118 |
-
first_row_data = csv_df.iloc[0].to_dict()
|
119 |
-
|
120 |
-
prompt = f"""
|
121 |
-
Based on the following document text extracted from a government project in Thailand:
|
122 |
-
{pdf_text}
|
123 |
-
|
124 |
-
Please map the information to JSON format using the following structure:
|
125 |
-
Column Headers: {column_headers}
|
126 |
-
Example Data (from the first row of the CSV): {first_row_data}
|
127 |
|
128 |
-
|
129 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
130 |
|
131 |
-
Return only JSON with no additional explanations or modifications.
|
132 |
-
"""
|
133 |
completion = client.chat.completions.create(
|
134 |
model="gpt-4o",
|
135 |
messages=[{"role": "user", "content": prompt}],
|
136 |
temperature=0,
|
137 |
response_format={"type": "json_object"},
|
138 |
)
|
139 |
-
|
140 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
141 |
return new_data_df
|
142 |
|
143 |
-
|
144 |
-
|
145 |
-
|
146 |
-
|
147 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
148 |
final_df.to_csv("merged_all_data.csv", index=False)
|
149 |
return final_df
|
150 |
|
151 |
-
#
|
152 |
-
|
153 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
154 |
return final_df
|
155 |
-
|
156 |
with open("Frame 1.png", "rb") as logo_file:
|
157 |
base64_logo = base64.b64encode(logo_file.read()).decode("utf-8")
|
158 |
|
159 |
-
#
|
160 |
-
|
|
|
|
|
161 |
# Add logo at the top using Base64 HTML
|
162 |
with gr.Row():
|
163 |
gr.HTML(
|
@@ -167,21 +293,33 @@ with gr.Blocks(title="AI Data Transformation (AI can make mistakes)",theme=baset
|
|
167 |
<img src="data:image/png;base64,{base64_logo}" alt="Logo" style="width: 150px; height: auto;">
|
168 |
</div>
|
169 |
<div style="justify-self: center;">
|
170 |
-
<h2 style="margin: 0; text-align: center;">AI Data Transformation
|
171 |
</div>
|
172 |
<div></div>
|
173 |
</div>
|
174 |
"""
|
175 |
)
|
176 |
-
# Gradio UI
|
177 |
gr.Interface(
|
178 |
-
|
179 |
-
|
180 |
-
|
181 |
-
|
182 |
-
|
183 |
-
|
184 |
-
|
185 |
-
|
186 |
-
|
187 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import os
|
2 |
import pandas as pd
|
3 |
import json
|
|
|
4 |
import gradio as gr
|
5 |
from openai import AzureOpenAI
|
6 |
from PyPDF2 import PdfReader
|
|
|
40 |
}
|
41 |
}
|
42 |
"""
|
43 |
+
# ===============================
|
44 |
# Azure OpenAI setup
|
45 |
+
# ===============================
|
46 |
os.environ["AZURE_OPENAI_ENDPOINT"] = os.getenv("AZURE_OPENAI_ENDPOINT")
|
47 |
os.environ["AZURE_OPENAI_API_KEY"] = os.getenv("AZURE_OPENAI_API_KEY")
|
|
|
48 |
|
49 |
client = AzureOpenAI(
|
50 |
api_version="2023-05-15",
|
51 |
+
azure_deployment="gpt-4o", # Replace with your actual model deployment name
|
52 |
)
|
53 |
+
|
54 |
+
# ===============================
|
55 |
+
# Helper Functions
|
56 |
+
# ===============================
|
57 |
+
|
58 |
+
def parse_field_definitions(field_text):
|
59 |
+
"""
|
60 |
+
Converts user-entered lines in the format:
|
61 |
+
Field Name: Description
|
62 |
+
into a dictionary { "Field Name": "Description", ... }.
|
63 |
+
Lines without a colon are ignored or added with an empty description.
|
64 |
+
"""
|
65 |
+
user_fields = {}
|
66 |
+
lines = field_text.split("\n")
|
67 |
+
for line in lines:
|
68 |
+
line = line.strip()
|
69 |
+
if not line:
|
70 |
+
continue
|
71 |
+
if ":" in line:
|
72 |
+
# Split on the first colon
|
73 |
+
field, description = line.split(":", 1)
|
74 |
+
field = field.strip()
|
75 |
+
description = description.strip()
|
76 |
+
user_fields[field] = description
|
77 |
+
else:
|
78 |
+
# If no colon is found, treat entire line as a field with an empty description
|
79 |
+
user_fields[line] = ""
|
80 |
+
return user_fields
|
81 |
+
|
82 |
def read_file_metadata(file_path):
|
83 |
df = pd.read_csv(file_path)
|
84 |
column_names = list(df.columns)
|
85 |
+
sample_columns = column_names[:2]
|
86 |
+
sample_data = df[sample_columns].iloc[0].to_dict() if len(df) > 0 else {}
|
87 |
+
return column_names, sample_data
|
88 |
+
|
89 |
+
def read_excel_metadata(file_path):
|
90 |
+
df = pd.read_excel(file_path)
|
91 |
+
column_names = list(df.columns)
|
92 |
+
sample_columns = column_names[:2]
|
93 |
+
sample_data = df[sample_columns].iloc[0].to_dict() if len(df) > 0 else {}
|
94 |
+
return column_names, sample_data
|
95 |
|
96 |
+
def create_column_mapping_prompt(file_metadata, user_fields):
|
|
|
97 |
prompt = (
|
98 |
+
"You are given CSV/Excel data from different sources. The files contain columns with similar content but with different names.\n"
|
99 |
+
"The user has provided the following desired fields and their descriptions:\n"
|
100 |
+
f"{json.dumps(user_fields, indent=2)}\n\n"
|
101 |
+
"For each file, here are the details (showing example data from the first two columns):\n\n"
|
102 |
+
)
|
103 |
+
for file_path, column_names, sample_data in file_metadata:
|
104 |
+
prompt += f"File: {file_path}\n"
|
105 |
+
prompt += f"Columns: {column_names}\n"
|
106 |
+
prompt += f"Example Data (first two columns): {sample_data}\n\n"
|
107 |
+
prompt += (
|
108 |
+
"Your task is to map the existing column names from each file to the desired fields provided by the user. "
|
109 |
+
"For each desired field, decide which column name in each file best represents it. "
|
110 |
+
"If a field cannot be found, map it to an empty string.\n\n"
|
111 |
+
"Return the mapping in JSON format with the following structure:\n"
|
112 |
+
"{\n"
|
113 |
+
' "desired_field1": { "source_file1": "matched_column_name_or_empty", "source_file2": "matched_column_name_or_empty", ... },\n'
|
114 |
+
' "desired_field2": { ... },\n'
|
115 |
+
" ...\n"
|
116 |
+
"}\n\n"
|
117 |
+
"Do not include any additional text in your response."
|
118 |
)
|
|
|
|
|
|
|
|
|
|
|
119 |
return prompt
|
120 |
|
121 |
+
def get_column_mapping(file_metadata, user_fields):
|
122 |
+
column_match_prompt = create_column_mapping_prompt(file_metadata, user_fields)
|
|
|
123 |
completion = client.chat.completions.create(
|
124 |
model="gpt-4o",
|
125 |
messages=[{"role": "user", "content": column_match_prompt}],
|
126 |
+
temperature=0.1,
|
127 |
response_format={"type": "json_object"},
|
128 |
)
|
|
|
|
|
|
|
129 |
|
130 |
+
try:
|
131 |
+
response_text = completion.choices[0].message.content.strip()
|
132 |
+
result_mapping = json.loads(response_text)
|
133 |
+
except Exception as e:
|
134 |
+
raise ValueError(
|
135 |
+
f"Error parsing LLM response: {e}\n\nResponse:\n{completion.choices[0].message.content}"
|
136 |
+
)
|
137 |
+
|
138 |
+
return result_mapping
|
139 |
+
|
140 |
+
def merge_files_with_mapping(file_paths, user_fields):
|
141 |
file_metadata = []
|
142 |
for file_path in file_paths:
|
143 |
+
if file_path.lower().endswith('.csv'):
|
144 |
+
columns, sample_data = read_file_metadata(file_path)
|
145 |
+
elif file_path.lower().endswith(('.xlsx', '.xls')):
|
146 |
+
columns, sample_data = read_excel_metadata(file_path)
|
147 |
+
else:
|
148 |
+
continue
|
149 |
+
file_metadata.append((file_path, columns, sample_data))
|
150 |
|
151 |
+
# Ask the LLM for a column mapping
|
152 |
+
mapping = get_column_mapping(file_metadata, user_fields) if file_metadata else {}
|
153 |
|
154 |
all_data = []
|
155 |
for file_path in file_paths:
|
156 |
+
if file_path.lower().endswith('.csv'):
|
157 |
+
df = pd.read_csv(file_path)
|
158 |
+
elif file_path.lower().endswith(('.xlsx', '.xls')):
|
159 |
+
df = pd.read_excel(file_path)
|
160 |
+
else:
|
161 |
+
continue
|
162 |
+
|
163 |
+
new_columns = {}
|
164 |
+
for desired_field, file_mapping in mapping.items():
|
165 |
+
source_column = ""
|
166 |
+
if file_path in file_mapping:
|
167 |
+
source_column = file_mapping[file_path]
|
168 |
+
else:
|
169 |
+
base_name = os.path.basename(file_path)
|
170 |
+
source_column = file_mapping.get(base_name, "")
|
171 |
+
|
172 |
+
if source_column and source_column in df.columns:
|
173 |
+
new_columns[source_column] = desired_field
|
174 |
+
|
175 |
+
df.rename(columns=new_columns, inplace=True)
|
176 |
all_data.append(df)
|
177 |
|
178 |
+
if not all_data:
|
179 |
+
raise ValueError("No valid CSV/Excel files to merge.")
|
180 |
+
|
181 |
final_df = pd.concat(all_data, ignore_index=True)
|
182 |
+
# Only keep columns in the order the user specified
|
183 |
+
desired_columns = list(user_fields.keys())
|
184 |
+
final_df = final_df.reindex(columns=desired_columns)
|
185 |
+
|
186 |
final_df.to_csv("merged_data.csv", index=False)
|
187 |
return final_df
|
188 |
|
|
|
189 |
def extract_text_from_pdf(pdf_path):
|
190 |
reader = PdfReader(pdf_path)
|
191 |
text = ""
|
192 |
for page in reader.pages:
|
193 |
+
page_text = page.extract_text()
|
194 |
+
if page_text:
|
195 |
+
text += page_text
|
196 |
return text
|
197 |
|
198 |
+
def map_pdf_to_csv_structure(pdf_path, csv_df, user_fields):
|
|
|
199 |
pdf_text = extract_text_from_pdf(pdf_path)
|
200 |
column_headers = list(csv_df.columns)
|
201 |
+
first_row_data = csv_df.iloc[0].to_dict() if len(csv_df) > 0 else {}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
202 |
|
203 |
+
prompt = (
|
204 |
+
f"Based on the following document text extracted from a government project in Thailand:\n{pdf_text}\n\n"
|
205 |
+
f"Please map the information to JSON format using the following structure:\n"
|
206 |
+
f"Column Headers: {column_headers}\n"
|
207 |
+
f"Example Data (from the first row of the CSV): {first_row_data}\n\n"
|
208 |
+
"For each column header, extract the corresponding value from the document text. "
|
209 |
+
"If a column header is not applicable or data is missing, use an empty string.\n\n"
|
210 |
+
"Return only JSON with no additional explanations."
|
211 |
+
)
|
212 |
|
|
|
|
|
213 |
completion = client.chat.completions.create(
|
214 |
model="gpt-4o",
|
215 |
messages=[{"role": "user", "content": prompt}],
|
216 |
temperature=0,
|
217 |
response_format={"type": "json_object"},
|
218 |
)
|
219 |
+
|
220 |
+
try:
|
221 |
+
response_text = completion.choices[0].message.content.strip()
|
222 |
+
result_dict = json.loads(response_text)
|
223 |
+
except Exception as e:
|
224 |
+
raise ValueError(
|
225 |
+
f"Error parsing LLM response for PDF mapping: {e}\n\nResponse:\n{completion.choices[0].message.content}"
|
226 |
+
)
|
227 |
+
|
228 |
+
if len(result_dict) == 1:
|
229 |
+
# If there's only a single top-level key, use its value as data
|
230 |
+
only_value = next(iter(result_dict.values()))
|
231 |
+
new_data_df = pd.DataFrame(only_value)
|
232 |
+
else:
|
233 |
+
new_data_df = pd.DataFrame(result_dict)
|
234 |
+
|
235 |
+
desired_columns = list(user_fields.keys())
|
236 |
+
new_data_df = new_data_df.reindex(columns=desired_columns)
|
237 |
return new_data_df
|
238 |
|
239 |
+
def combine_all_data(file_paths, pdf_file, user_fields):
|
240 |
+
merged_csv_df = merge_files_with_mapping(file_paths, user_fields)
|
241 |
+
|
242 |
+
if pdf_file and os.path.exists(pdf_file):
|
243 |
+
pdf_data_df = map_pdf_to_csv_structure(pdf_file, merged_csv_df, user_fields)
|
244 |
+
final_df = pd.concat([merged_csv_df, pdf_data_df], ignore_index=True)
|
245 |
+
else:
|
246 |
+
final_df = merged_csv_df
|
247 |
+
|
248 |
+
desired_columns = list(user_fields.keys())
|
249 |
+
final_df = final_df.reindex(columns=desired_columns)
|
250 |
+
|
251 |
final_df.to_csv("merged_all_data.csv", index=False)
|
252 |
return final_df
|
253 |
|
254 |
+
# ===============================
|
255 |
+
# Gradio Interface Function
|
256 |
+
# ===============================
|
257 |
+
def process_data(files, pdf_file, field_text):
|
258 |
+
"""
|
259 |
+
Main function for Gradio to handle user inputs:
|
260 |
+
- files: list of CSV/Excel files
|
261 |
+
- pdf_file: a single PDF file
|
262 |
+
- field_text: multiline text with lines in the form: "Field Name: Description"
|
263 |
+
"""
|
264 |
+
|
265 |
+
# Parse the user's desired fields from multiline text
|
266 |
+
user_fields = parse_field_definitions(field_text)
|
267 |
+
if not user_fields:
|
268 |
+
return "No valid fields found. Please use the format:\n\nField Name: Description"
|
269 |
+
|
270 |
+
file_paths = [f.name for f in files] if files else []
|
271 |
+
pdf_path = pdf_file.name if pdf_file is not None else None
|
272 |
+
|
273 |
+
try:
|
274 |
+
final_df = combine_all_data(file_paths, pdf_path, user_fields)
|
275 |
+
except Exception as e:
|
276 |
+
return f"Error during processing: {e}"
|
277 |
+
|
278 |
return final_df
|
279 |
+
|
280 |
with open("Frame 1.png", "rb") as logo_file:
|
281 |
base64_logo = base64.b64encode(logo_file.read()).decode("utf-8")
|
282 |
|
283 |
+
# ===============================
|
284 |
+
# Gradio UI
|
285 |
+
# ===============================
|
286 |
+
with gr.Blocks(theme=basetheme,js=js_func,fill_height=True) as demo:
|
287 |
# Add logo at the top using Base64 HTML
|
288 |
with gr.Row():
|
289 |
gr.HTML(
|
|
|
293 |
<img src="data:image/png;base64,{base64_logo}" alt="Logo" style="width: 150px; height: auto;">
|
294 |
</div>
|
295 |
<div style="justify-self: center;">
|
296 |
+
<h2 style="margin: 0; text-align: center;">AI Data Transformation with User-Selected Fields</h2>
|
297 |
</div>
|
298 |
<div></div>
|
299 |
</div>
|
300 |
"""
|
301 |
)
|
|
|
302 |
gr.Interface(
|
303 |
+
fn=process_data,
|
304 |
+
inputs=[
|
305 |
+
gr.File(label="Upload CSV/Excel files", file_count="multiple",file_types=[".csv", ".xlsx", ".xls"]),
|
306 |
+
gr.File(label="Upload PDF file (optional)", file_types=[".pdf"]),
|
307 |
+
gr.Textbox(
|
308 |
+
label="Desired Fields (one per line, use 'Field Name: Description' format)",
|
309 |
+
placeholder="Example:\nName: Full name\nDOB: Date of birth\nAddress: Full address\n",
|
310 |
+
lines=6,
|
311 |
+
),
|
312 |
+
],
|
313 |
+
outputs=gr.Dataframe(label="Final Merged Data"),
|
314 |
+
description=(
|
315 |
+
"Upload one or more CSV/Excel files, optionally a PDF file, and enter your desired fields below. "
|
316 |
+
"Type each field on a new line in the format:\n"
|
317 |
+
"'Field Name: Description'\n\n"
|
318 |
+
"The AI will automatically map and merge columns from your files to these fields, "
|
319 |
+
"then optionally extract matching data from the PDF."
|
320 |
+
),
|
321 |
+
)
|
322 |
+
|
323 |
+
if __name__ == "__main__":
|
324 |
+
# Launch the Gradio app
|
325 |
+
demo.launch()
|