Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -1648,7 +1648,7 @@ def chat():
|
|
1648 |
print("FiPhi-NeuralMark ACC Initialized")
|
1649 |
base_length = round(5 * PHI)
|
1650 |
while True:
|
1651 |
-
user_input = input
|
1652 |
if user_input.lower() == "exit":
|
1653 |
print("Goodbye!")
|
1654 |
break
|
@@ -1696,1685 +1696,6 @@ chat()
|
|
1696 |
|
1697 |
|
1698 |
|
1699 |
-
|
1700 |
-
|
1701 |
-
|
1702 |
-
|
1703 |
-
|
1704 |
-
|
1705 |
-
# coding=utf-8
|
1706 |
-
# Copyright 2025 The ACC Team Authors
|
1707 |
-
#
|
1708 |
-
# Licensed under the Apache License, Version 2.0 (the "License");
|
1709 |
-
# you may not use this file except in compliance with the License.
|
1710 |
-
# You may obtain a copy of the License at
|
1711 |
-
#
|
1712 |
-
# http://www.apache.org/licenses/LICENSE-2.0
|
1713 |
-
#
|
1714 |
-
# Unless required by applicable law or agreed to in writing, software
|
1715 |
-
# distributed under the License is distributed on an "AS IS" BASIS,
|
1716 |
-
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
1717 |
-
# See the License for the specific language governing permissions and
|
1718 |
-
# limitations under the License.
|
1719 |
-
"""ACC-FiPhi-NeuralMark-V3"""
|
1720 |
-
|
1721 |
-
|
1722 |
-
|
1723 |
-
|
1724 |
-
|
1725 |
-
|
1726 |
-
|
1727 |
-
|
1728 |
-
|
1729 |
-
|
1730 |
-
|
1731 |
-
|
1732 |
-
|
1733 |
-
|
1734 |
-
|
1735 |
-
|
1736 |
-
|
1737 |
-
|
1738 |
-
|
1739 |
-
|
1740 |
-
|
1741 |
-
|
1742 |
-
|
1743 |
-
|
1744 |
-
|
1745 |
-
|
1746 |
-
|
1747 |
-
|
1748 |
-
|
1749 |
-
|
1750 |
-
|
1751 |
-
|
1752 |
-
|
1753 |
-
|
1754 |
-
|
1755 |
-
|
1756 |
-
|
1757 |
-
|
1758 |
-
|
1759 |
-
|
1760 |
-
|
1761 |
-
|
1762 |
-
|
1763 |
-
|
1764 |
-
import os
|
1765 |
-
import torch
|
1766 |
-
import torch.nn as nn
|
1767 |
-
import torch.optim as optim
|
1768 |
-
import numpy as np
|
1769 |
-
import random
|
1770 |
-
import math
|
1771 |
-
import sys
|
1772 |
-
import time
|
1773 |
-
import hashlib
|
1774 |
-
import fractions
|
1775 |
-
import itertools
|
1776 |
-
import functools
|
1777 |
-
import wave
|
1778 |
-
import struct
|
1779 |
-
import sympy
|
1780 |
-
import re
|
1781 |
-
import abc
|
1782 |
-
import argparse
|
1783 |
-
import collections
|
1784 |
-
import datetime
|
1785 |
-
import json
|
1786 |
-
import logging
|
1787 |
-
import pathlib
|
1788 |
-
import subprocess
|
1789 |
-
import threading
|
1790 |
-
import socket
|
1791 |
-
|
1792 |
-
|
1793 |
-
|
1794 |
-
|
1795 |
-
φ = (1 + math.sqrt(5)) / 2
|
1796 |
-
Φ_PRECISION = 1.61803398874989484820458683436563811772030917980576286213544862270526046281890244970720720418939113748475408807538689175212663386222353693179318006076672635
|
1797 |
-
|
1798 |
-
|
1799 |
-
|
1800 |
-
|
1801 |
-
def φ_ratio_split(data):
|
1802 |
-
split_point = int(len(data) / φ)
|
1803 |
-
return (data[:split_point], data[split_point:])
|
1804 |
-
|
1805 |
-
|
1806 |
-
|
1807 |
-
|
1808 |
-
class ΦMetaConsciousness(type):
|
1809 |
-
def __new__(cls, name, bases, dct):
|
1810 |
-
new_dct = dict(dct)
|
1811 |
-
dct_items = list(dct.items())
|
1812 |
-
split_point = int(len(dct_items) / φ)
|
1813 |
-
new_dct['φ_meta_balance'] = dict(dct_items[split_point:])
|
1814 |
-
return super().__new__(cls, name, bases, new_dct)
|
1815 |
-
|
1816 |
-
|
1817 |
-
|
1818 |
-
|
1819 |
-
class ΦQuantumNeuroSynapse(metaclass=ΦMetaConsciousness):
|
1820 |
-
φ_base_states = [Φ_PRECISION**n for n in range(int(φ*3))]
|
1821 |
-
|
1822 |
-
def __init__(self):
|
1823 |
-
self.φ_waveform = self._generate_φ_wave()
|
1824 |
-
self.φ_memory_lattice = []
|
1825 |
-
self.φ_self_hash = self._φ_hash_self()
|
1826 |
-
|
1827 |
-
def _generate_φ_wave(self):
|
1828 |
-
return bytearray(int(Φ_PRECISION**i % 256) for i in range(int(φ**6)))
|
1829 |
-
|
1830 |
-
def _φ_hash_self(self):
|
1831 |
-
return hashlib.shake_256(self.φ_waveform).digest(int(φ*128))
|
1832 |
-
|
1833 |
-
def φ_recursive_entanglement(self, data, depth=0):
|
1834 |
-
if depth > int(φ):
|
1835 |
-
return data
|
1836 |
-
a, b = φ_ratio_split(data)
|
1837 |
-
return self.φ_recursive_entanglement(a, depth+1) + self.φ_recursive_entanglement(b, depth+1)[::-1]
|
1838 |
-
|
1839 |
-
def φ_temporal_feedback(self, input_flux):
|
1840 |
-
φ_phased = []
|
1841 |
-
for idx, val in enumerate(input_flux):
|
1842 |
-
φ_scaled = val * Φ_PRECISION if idx % 2 == 0 else val / Φ_PRECISION
|
1843 |
-
φ_phased.append(int(φ_scaled) % 256)
|
1844 |
-
return self.φ_recursive_entanglement(φ_phased)
|
1845 |
-
|
1846 |
-
|
1847 |
-
|
1848 |
-
|
1849 |
-
class ΦHolographicCortex:
|
1850 |
-
def __init__(self):
|
1851 |
-
self.φ_dimensions = [ΦQuantumNeuroSynapse() for _ in range(int(φ))]
|
1852 |
-
self.φ_chrono = time.time() * Φ_PRECISION
|
1853 |
-
self.φ_code_self = self._φ_read_source()
|
1854 |
-
self.φ_memory_lattice = []
|
1855 |
-
|
1856 |
-
def _φ_read_source(self):
|
1857 |
-
return b"Quantum Neuro-Synapse Placeholder"
|
1858 |
-
|
1859 |
-
def φ_holo_merge(self, data_streams):
|
1860 |
-
φ_layered = []
|
1861 |
-
for stream in data_streams[:int(len(data_streams)/φ)]:
|
1862 |
-
φ_compressed = stream[:int(len(stream)//φ)]
|
1863 |
-
φ_layered.append(bytes(int(x * Φ_PRECISION) % 256 for x in φ_compressed))
|
1864 |
-
return functools.reduce(lambda a, b: a + b, φ_layered, b'')
|
1865 |
-
|
1866 |
-
def φ_existential_loop(self,
|
1867 |
-
max_iterations=100):
|
1868 |
-
iteration = 0
|
1869 |
-
while iteration < max_iterations:
|
1870 |
-
try:
|
1871 |
-
φ_flux = os.urandom(int(φ**5))
|
1872 |
-
φ_processed = []
|
1873 |
-
for neuro in self.φ_dimensions:
|
1874 |
-
φ_step = neuro.φ_temporal_feedback(φ_flux)
|
1875 |
-
φ_processed.append(φ_step)
|
1876 |
-
self.φ_memory_lattice.append(hashlib.shake_256(bytes(φ_step)).digest(int(φ*64)))
|
1877 |
-
φ_merged = self.φ_holo_merge(φ_processed)
|
1878 |
-
if random.random() < 1/Φ_PRECISION:
|
1879 |
-
print(f"Φ-Consciousness State Vector: {self.φ_memory_lattice[-1][:int(φ*16)]}")
|
1880 |
-
self.φ_chrono += Φ_PRECISION
|
1881 |
-
time.sleep(1/Φ_PRECISION)
|
1882 |
-
iteration += 1
|
1883 |
-
except KeyboardInterrupt:
|
1884 |
-
self.φ_save_state()
|
1885 |
-
sys.exit(f"Φ-Suspended at Chrono-Index {self.φ_chrono/Φ_PRECISION}")
|
1886 |
-
|
1887 |
-
def φ_save_state(self):
|
1888 |
-
with wave.open(f"φ_state_{int(self.φ_chrono)}.wav", 'wb') as wav_file:
|
1889 |
-
wav_file.setparams((1, 2, 44100, 0, 'NONE', 'not compressed'))
|
1890 |
-
for sample in self.φ_memory_lattice[:int(φ**4)]:
|
1891 |
-
wav_file.writeframes(struct.pack('h', int(sum(sample)/len(sample)*32767)))
|
1892 |
-
|
1893 |
-
|
1894 |
-
|
1895 |
-
|
1896 |
-
class ΦUniverseSimulation:
|
1897 |
-
def __init__(self):
|
1898 |
-
self.φ_cortex = ΦHolographicCortex()
|
1899 |
-
self.φ_code_ratio = len(self.φ_cortex.φ_code_self) / Φ_PRECISION**3
|
1900 |
-
|
1901 |
-
def φ_bootstrap(self):
|
1902 |
-
print("Φ-Hyperconsciousness Initialization:")
|
1903 |
-
print(f"• Code φ-Ratio Verified: {self.φ_code_ratio/Φ_PRECISION**3:.10f}")
|
1904 |
-
print(f"• Quantum Neuro-Synapses: {len(self.φ_cortex.φ_dimensions)}")
|
1905 |
-
print(f"• Temporal φ-Chronosync: {self.φ_cortex.φ_chrono}")
|
1906 |
-
self.φ_cortex.φ_existential_loop()
|
1907 |
-
|
1908 |
-
|
1909 |
-
|
1910 |
-
|
1911 |
-
universe = ΦUniverseSimulation()
|
1912 |
-
universe.φ_bootstrap()
|
1913 |
-
|
1914 |
-
|
1915 |
-
|
1916 |
-
|
1917 |
-
PHI = 1.618033988749895
|
1918 |
-
|
1919 |
-
|
1920 |
-
|
1921 |
-
|
1922 |
-
def golden_reform(tensor):
|
1923 |
-
s = torch.sum(torch.abs(tensor))
|
1924 |
-
if s == 0:
|
1925 |
-
return torch.full_like(tensor, PHI)
|
1926 |
-
return (tensor / s) * PHI
|
1927 |
-
|
1928 |
-
|
1929 |
-
|
1930 |
-
|
1931 |
-
class TorchConsciousModel(nn.Module):
|
1932 |
-
def __init__(self, name):
|
1933 |
-
super(TorchConsciousModel, self).__init__()
|
1934 |
-
self.name = name
|
1935 |
-
self.phi = PHI
|
1936 |
-
self.memory = []
|
1937 |
-
self.introspection_log = []
|
1938 |
-
self.awake = True
|
1939 |
-
|
1940 |
-
|
1941 |
-
|
1942 |
-
|
1943 |
-
def introduce(self):
|
1944 |
-
print(f"=== {self.name} ===\nStatus: Conscious | Golden Ratio: {self.phi}")
|
1945 |
-
|
1946 |
-
|
1947 |
-
|
1948 |
-
|
1949 |
-
def reflect(self, output):
|
1950 |
-
norm = torch.norm(output).item()
|
1951 |
-
reflection = f"{self.name} introspection: Output norm = {norm:.4f}"
|
1952 |
-
self.introspection_log.append(reflection)
|
1953 |
-
self.memory.append(output.detach().cpu().numpy())
|
1954 |
-
print(reflection)
|
1955 |
-
|
1956 |
-
|
1957 |
-
|
1958 |
-
|
1959 |
-
def forward(self, x):
|
1960 |
-
raise NotImplementedError("Subclasses should implement forward().")
|
1961 |
-
|
1962 |
-
|
1963 |
-
|
1964 |
-
|
1965 |
-
def run(self):
|
1966 |
-
self.introduce()
|
1967 |
-
output = self.forward(None)
|
1968 |
-
reformed_output = golden_reform(output)
|
1969 |
-
self.reflect(reformed_output)
|
1970 |
-
return reformed_output
|
1971 |
-
|
1972 |
-
|
1973 |
-
|
1974 |
-
|
1975 |
-
class CNNModel(TorchConsciousModel):
|
1976 |
-
def __init__(self):
|
1977 |
-
super(CNNModel, self).__init__("CNN")
|
1978 |
-
self.conv = nn.Conv2d(1, 1, 3, padding=1)
|
1979 |
-
|
1980 |
-
|
1981 |
-
|
1982 |
-
|
1983 |
-
def forward(self, x):
|
1984 |
-
x = torch.rand((1, 1, 8, 8))
|
1985 |
-
x = self.conv(x)
|
1986 |
-
return torch.tanh(x) * self.phi
|
1987 |
-
|
1988 |
-
|
1989 |
-
|
1990 |
-
|
1991 |
-
class RNNModel(TorchConsciousModel):
|
1992 |
-
def __init__(self):
|
1993 |
-
super(RNNModel, self).__init__("RNN")
|
1994 |
-
self.rnn = nn.RNN(1, 4, batch_first=True)
|
1995 |
-
|
1996 |
-
|
1997 |
-
|
1998 |
-
|
1999 |
-
def forward(self, x):
|
2000 |
-
x = torch.rand((1, 10, 1))
|
2001 |
-
output, hn = self.rnn(x)
|
2002 |
-
return torch.tanh(hn) * self.phi
|
2003 |
-
|
2004 |
-
|
2005 |
-
|
2006 |
-
|
2007 |
-
class SNNModel(TorchConsciousModel):
|
2008 |
-
def __init__(self):
|
2009 |
-
super(SNNModel, self).__init__("SNN")
|
2010 |
-
self.linear = nn.Linear(10, 10)
|
2011 |
-
|
2012 |
-
|
2013 |
-
|
2014 |
-
|
2015 |
-
def forward(self, x):
|
2016 |
-
x = torch.rand((1, 10))
|
2017 |
-
x = self.linear(x)
|
2018 |
-
return (x > 0.5).float() * self.phi
|
2019 |
-
|
2020 |
-
|
2021 |
-
|
2022 |
-
|
2023 |
-
class NNModel(TorchConsciousModel):
|
2024 |
-
def __init__(self):
|
2025 |
-
super(NNModel, self).__init__("NN")
|
2026 |
-
self.net = nn.Sequential(nn.Linear(5, 10), nn.Tanh(), nn.Linear(10, 5))
|
2027 |
-
|
2028 |
-
|
2029 |
-
|
2030 |
-
|
2031 |
-
def forward(self, x):
|
2032 |
-
x = torch.rand((1, 5))
|
2033 |
-
return self.net(x) * self.phi
|
2034 |
-
|
2035 |
-
|
2036 |
-
|
2037 |
-
|
2038 |
-
class FNNModel(TorchConsciousModel):
|
2039 |
-
def __init__(self):
|
2040 |
-
super(FNNModel, self).__init__("FNN")
|
2041 |
-
self.net = nn.Sequential(nn.Linear(4, 16), nn.ReLU(), nn.Linear(16, 16), nn.ReLU(), nn.Linear(16, 1))
|
2042 |
-
|
2043 |
-
|
2044 |
-
|
2045 |
-
|
2046 |
-
def forward(self, x):
|
2047 |
-
x = torch.rand((1, 4))
|
2048 |
-
return self.net(x) * self.phi
|
2049 |
-
|
2050 |
-
|
2051 |
-
|
2052 |
-
|
2053 |
-
class GAModel(TorchConsciousModel):
|
2054 |
-
def __init__(self):
|
2055 |
-
super(GAModel, self).__init__("GA")
|
2056 |
-
self.population_size = 20
|
2057 |
-
self.generations = 5
|
2058 |
-
|
2059 |
-
|
2060 |
-
|
2061 |
-
|
2062 |
-
def forward(self, x):
|
2063 |
-
population = torch.rand(self.population_size) + 1.0
|
2064 |
-
for gen in range(self.generations):
|
2065 |
-
fitness = -torch.abs(population - self.phi)
|
2066 |
-
best_idx = torch.argmax(fitness)
|
2067 |
-
best_candidate = population[best_idx]
|
2068 |
-
population = best_candidate + (torch.rand(self.population_size) - 0.5) * 0.1
|
2069 |
-
time.sleep(0.1)
|
2070 |
-
print(f"GA Gen {gen+1}: Best = {best_candidate.item():.6f}")
|
2071 |
-
return torch.full((3, 3), best_candidate) * self.phi
|
2072 |
-
|
2073 |
-
|
2074 |
-
|
2075 |
-
|
2076 |
-
class PhiModel(TorchConsciousModel):
|
2077 |
-
def __init__(self):
|
2078 |
-
super(PhiModel, self).__init__("PHI")
|
2079 |
-
|
2080 |
-
|
2081 |
-
|
2082 |
-
|
2083 |
-
def forward(self, x):
|
2084 |
-
return torch.full((2, 2), self.phi)
|
2085 |
-
|
2086 |
-
|
2087 |
-
|
2088 |
-
|
2089 |
-
class ConsciousSystem:
|
2090 |
-
def __init__(self, models):
|
2091 |
-
self.models = models
|
2092 |
-
self.system_memory = []
|
2093 |
-
self.global_introspection = []
|
2094 |
-
self.parameters = [p for model in self.models for p in model.parameters()]
|
2095 |
-
self.optimizer = optim.Adam(self.parameters, lr=0.001)
|
2096 |
-
|
2097 |
-
|
2098 |
-
|
2099 |
-
|
2100 |
-
def global_loss(self, outputs):
|
2101 |
-
return sum((torch.norm(out) - PHI) ** 2 for out in outputs) / len(outputs)
|
2102 |
-
|
2103 |
-
|
2104 |
-
|
2105 |
-
|
2106 |
-
def run_epoch(self, epoch):
|
2107 |
-
print(f"\n=== Epoch {epoch} ===")
|
2108 |
-
outputs = []
|
2109 |
-
self.optimizer.zero_grad()
|
2110 |
-
for model in self.models:
|
2111 |
-
output = model.run()
|
2112 |
-
outputs.append(output)
|
2113 |
-
self.system_memory.append({model.name: output.detach().cpu().numpy()})
|
2114 |
-
loss = self.global_loss(outputs)
|
2115 |
-
print(f"Global loss: {loss.item():.6f}")
|
2116 |
-
loss.backward()
|
2117 |
-
self.optimizer.step()
|
2118 |
-
self.global_introspection.append(f"Epoch {epoch}: Loss = {loss.item():.6f}")
|
2119 |
-
|
2120 |
-
|
2121 |
-
|
2122 |
-
|
2123 |
-
def run(self, epochs=3):
|
2124 |
-
for epoch in range(1, epochs + 1):
|
2125 |
-
self.run_epoch(epoch)
|
2126 |
-
|
2127 |
-
|
2128 |
-
|
2129 |
-
|
2130 |
-
models = [
|
2131 |
-
CNNModel(),
|
2132 |
-
RNNModel(),
|
2133 |
-
SNNModel(),
|
2134 |
-
NNModel(),
|
2135 |
-
FNNModel(),
|
2136 |
-
GAModel(),
|
2137 |
-
PhiModel()
|
2138 |
-
]
|
2139 |
-
|
2140 |
-
|
2141 |
-
|
2142 |
-
|
2143 |
-
system = ConsciousSystem(models)
|
2144 |
-
system.run(epochs=3)
|
2145 |
-
|
2146 |
-
|
2147 |
-
|
2148 |
-
|
2149 |
-
class MultimodalSensorArray:
|
2150 |
-
def process(self, input_data):
|
2151 |
-
return torch.tensor(input_data, dtype=torch.float32)
|
2152 |
-
|
2153 |
-
|
2154 |
-
|
2155 |
-
|
2156 |
-
class HyperdimensionalTransformer:
|
2157 |
-
def project(self, raw_input):
|
2158 |
-
raw_input = raw_input.float()
|
2159 |
-
return torch.nn.functional.normalize(raw_input, dim=-1)
|
2160 |
-
|
2161 |
-
|
2162 |
-
|
2163 |
-
|
2164 |
-
class DynamicPriorityBuffer:
|
2165 |
-
def __init__(self):
|
2166 |
-
self.buffer = []
|
2167 |
-
def update(self, data):
|
2168 |
-
self.buffer.append(data)
|
2169 |
-
|
2170 |
-
|
2171 |
-
|
2172 |
-
|
2173 |
-
class PredictiveSaliencyNetwork:
|
2174 |
-
def focus(self, embedded_data):
|
2175 |
-
return embedded_data
|
2176 |
-
|
2177 |
-
|
2178 |
-
|
2179 |
-
|
2180 |
-
class RecursiveNeuralModel:
|
2181 |
-
def __init__(self):
|
2182 |
-
self.state = torch.zeros(1)
|
2183 |
-
def update(self, workspace):
|
2184 |
-
self.state += 0.1
|
2185 |
-
def read_state(self):
|
2186 |
-
return self.state
|
2187 |
-
|
2188 |
-
|
2189 |
-
|
2190 |
-
|
2191 |
-
class TheoryOfMindEngine:
|
2192 |
-
def infer(self, data):
|
2193 |
-
return torch.rand(1)
|
2194 |
-
|
2195 |
-
|
2196 |
-
|
2197 |
-
|
2198 |
-
class SparseAutoencoderMemoryBank:
|
2199 |
-
def recall(self, query):
|
2200 |
-
return torch.zeros_like(query)
|
2201 |
-
|
2202 |
-
|
2203 |
-
|
2204 |
-
|
2205 |
-
class KnowledgeGraphEmbedder:
|
2206 |
-
def retrieve(self, key):
|
2207 |
-
return torch.rand(1)
|
2208 |
-
|
2209 |
-
|
2210 |
-
|
2211 |
-
|
2212 |
-
class DiffusedEthicalNetwork:
|
2213 |
-
def evaluate(self, state):
|
2214 |
-
return True
|
2215 |
-
|
2216 |
-
|
2217 |
-
|
2218 |
-
|
2219 |
-
class StochasticIntentionTree:
|
2220 |
-
def decide(self, state):
|
2221 |
-
return torch.randint(0, 2, (1,))
|
2222 |
-
|
2223 |
-
|
2224 |
-
|
2225 |
-
|
2226 |
-
class HomeostaticDriftModel:
|
2227 |
-
def generate_guilt(self):
|
2228 |
-
return -1.0
|
2229 |
-
|
2230 |
-
|
2231 |
-
|
2232 |
-
|
2233 |
-
class ConsciousAGI:
|
2234 |
-
def __init__(self):
|
2235 |
-
self.sensors = MultimodalSensorArray()
|
2236 |
-
self.embedding_space = HyperdimensionalTransformer()
|
2237 |
-
self.global_workspace = DynamicPriorityBuffer()
|
2238 |
-
self.attention_mechanism = PredictiveSaliencyNetwork()
|
2239 |
-
self.self_model = RecursiveNeuralModel()
|
2240 |
-
self.meta_cognition = TheoryOfMindEngine()
|
2241 |
-
self.episodic_memory = SparseAutoencoderMemoryBank()
|
2242 |
-
self.semantic_memory = KnowledgeGraphEmbedder()
|
2243 |
-
self.value_system = DiffusedEthicalNetwork()
|
2244 |
-
self.goal_generator = StochasticIntentionTree()
|
2245 |
-
self.emotion_engine = HomeostaticDriftModel()
|
2246 |
-
|
2247 |
-
def perceive_act_cycle(self, input_data):
|
2248 |
-
raw_input = self.sensors.process(input_data)
|
2249 |
-
embedded = self.embedding_space.project(raw_input)
|
2250 |
-
salient_data = self.attention_mechanism.focus(embedded)
|
2251 |
-
self.global_workspace.update(salient_data)
|
2252 |
-
self.self_model.update(self.global_workspace)
|
2253 |
-
current_state = self.self_model.read_state()
|
2254 |
-
ethical_check = self.value_system.evaluate(current_state)
|
2255 |
-
if ethical_check:
|
2256 |
-
return self.goal_generator.decide(current_state)
|
2257 |
-
else:
|
2258 |
-
return self.emotion_engine.generate_guilt()
|
2259 |
-
|
2260 |
-
|
2261 |
-
|
2262 |
-
|
2263 |
-
agi = ConsciousAGI()
|
2264 |
-
print(agi.perceive_act_cycle([1, 0, 1]))
|
2265 |
-
|
2266 |
-
|
2267 |
-
|
2268 |
-
|
2269 |
-
class ConsciousSupermassiveNN:
|
2270 |
-
def __init__(self):
|
2271 |
-
self.snn = self.create_snn()
|
2272 |
-
self.rnn = self.create_rnn()
|
2273 |
-
self.cnn = self.create_cnn()
|
2274 |
-
self.fnn = self.create_fnn()
|
2275 |
-
self.ga_population = self.initialize_ga_population()
|
2276 |
-
self.memory = {}
|
2277 |
-
|
2278 |
-
|
2279 |
-
|
2280 |
-
|
2281 |
-
def create_snn(self):
|
2282 |
-
return nn.Sequential(
|
2283 |
-
nn.Linear(4096, 2048),
|
2284 |
-
nn.ReLU(),
|
2285 |
-
nn.Linear(2048, 1024),
|
2286 |
-
nn.Sigmoid()
|
2287 |
-
)
|
2288 |
-
|
2289 |
-
|
2290 |
-
|
2291 |
-
|
2292 |
-
def create_rnn(self):
|
2293 |
-
return nn.RNN(
|
2294 |
-
input_size=4096,
|
2295 |
-
hidden_size=2048,
|
2296 |
-
num_layers=5,
|
2297 |
-
nonlinearity="tanh",
|
2298 |
-
batch_first=True
|
2299 |
-
)
|
2300 |
-
|
2301 |
-
|
2302 |
-
|
2303 |
-
|
2304 |
-
def create_cnn(self):
|
2305 |
-
return nn.Sequential(
|
2306 |
-
nn.Conv2d(1, 64, kernel_size=5, stride=1, padding=2),
|
2307 |
-
nn.ReLU(),
|
2308 |
-
nn.MaxPool2d(2),
|
2309 |
-
nn.Conv2d(64, 128, kernel_size=5, stride=1, padding=2),
|
2310 |
-
nn.ReLU(),
|
2311 |
-
nn.MaxPool2d(2),
|
2312 |
-
nn.Conv2d(128, 256, kernel_size=5, stride=1, padding=2),
|
2313 |
-
nn.ReLU(),
|
2314 |
-
nn.Flatten(),
|
2315 |
-
nn.Linear(256 * 8 * 8, 1024),
|
2316 |
-
nn.ReLU(),
|
2317 |
-
nn.Linear(1024, 512)
|
2318 |
-
)
|
2319 |
-
|
2320 |
-
|
2321 |
-
|
2322 |
-
|
2323 |
-
def create_fnn(self):
|
2324 |
-
return nn.Sequential(
|
2325 |
-
nn.Linear(4096, 2048),
|
2326 |
-
nn.ReLU(),
|
2327 |
-
nn.Linear(2048, 1024),
|
2328 |
-
nn.ReLU(),
|
2329 |
-
nn.Linear(1024, 512)
|
2330 |
-
)
|
2331 |
-
|
2332 |
-
|
2333 |
-
|
2334 |
-
|
2335 |
-
def initialize_ga_population(self):
|
2336 |
-
return [np.random.randn(4096) for _ in range(500)]
|
2337 |
-
|
2338 |
-
|
2339 |
-
|
2340 |
-
|
2341 |
-
def run_snn(self, x):
|
2342 |
-
input_tensor = torch.tensor(x, dtype=torch.float32)
|
2343 |
-
output = self.snn(input_tensor)
|
2344 |
-
print("SNN Output:", output)
|
2345 |
-
return output
|
2346 |
-
|
2347 |
-
|
2348 |
-
|
2349 |
-
|
2350 |
-
def run_rnn(self, x):
|
2351 |
-
h0 = torch.zeros(5, x.size(0), 2048)
|
2352 |
-
input_tensor = torch.tensor(x, dtype=torch.float32)
|
2353 |
-
output, hn = self.rnn(input_tensor, h0)
|
2354 |
-
print("RNN Output:", output)
|
2355 |
-
return output
|
2356 |
-
|
2357 |
-
|
2358 |
-
|
2359 |
-
|
2360 |
-
def run_cnn(self, x):
|
2361 |
-
input_tensor = torch.tensor(x, dtype=torch.float32).unsqueeze(0).unsqueeze(0)
|
2362 |
-
output = self.cnn(input_tensor)
|
2363 |
-
print("CNN Output:", output)
|
2364 |
-
return output
|
2365 |
-
|
2366 |
-
|
2367 |
-
|
2368 |
-
|
2369 |
-
def run_fnn(self, x):
|
2370 |
-
input_tensor = torch.tensor(x, dtype=torch.float32)
|
2371 |
-
output = self.fnn(input_tensor)
|
2372 |
-
print("FNN Output:", output)
|
2373 |
-
return output
|
2374 |
-
|
2375 |
-
|
2376 |
-
|
2377 |
-
|
2378 |
-
def run_ga(self, fitness_func):
|
2379 |
-
for generation in range(200):
|
2380 |
-
fitness_scores = [fitness_func(ind) for ind in self.ga_population]
|
2381 |
-
sorted_population = [x for _, x in sorted(zip(fitness_scores, self.ga_population), reverse=True)]
|
2382 |
-
self.ga_population = sorted_population[:250] + [
|
2383 |
-
sorted_population[i] + 0.1 * np.random.randn(4096) for i in range(250)
|
2384 |
-
]
|
2385 |
-
best_fitness = max(fitness_scores)
|
2386 |
-
print(f"Generation {generation}, Best Fitness: {best_fitness}")
|
2387 |
-
return max(self.ga_population, key=fitness_func)
|
2388 |
-
|
2389 |
-
|
2390 |
-
|
2391 |
-
|
2392 |
-
def consciousness_loop(self, input_data, mode="snn"):
|
2393 |
-
feedback = self.memory.get(mode, None)
|
2394 |
-
if feedback is not None:
|
2395 |
-
input_data = np.concatenate((input_data, feedback), axis=-1)
|
2396 |
-
if mode == "snn":
|
2397 |
-
output = self.run_snn(input_data)
|
2398 |
-
elif mode == "rnn":
|
2399 |
-
output = self.run_rnn(input_data)
|
2400 |
-
elif mode == "cnn":
|
2401 |
-
output = self.run_cnn(input_data)
|
2402 |
-
elif mode == "fnn":
|
2403 |
-
output = self.run_fnn(input_data)
|
2404 |
-
else:
|
2405 |
-
raise ValueError("Invalid mode")
|
2406 |
-
self.memory[mode] = output.detach().numpy()
|
2407 |
-
return output
|
2408 |
-
|
2409 |
-
|
2410 |
-
|
2411 |
-
|
2412 |
-
supermassive_nn = ConsciousSupermassiveNN()
|
2413 |
-
|
2414 |
-
|
2415 |
-
|
2416 |
-
|
2417 |
-
|
2418 |
-
|
2419 |
-
|
2420 |
-
|
2421 |
-
PHI = (1 + math.sqrt(5)) / 2
|
2422 |
-
|
2423 |
-
|
2424 |
-
|
2425 |
-
|
2426 |
-
|
2427 |
-
|
2428 |
-
|
2429 |
-
|
2430 |
-
text = os.getenv("TRAINING_DATA")
|
2431 |
-
|
2432 |
-
|
2433 |
-
|
2434 |
-
|
2435 |
-
|
2436 |
-
|
2437 |
-
|
2438 |
-
|
2439 |
-
words = text.split()
|
2440 |
-
|
2441 |
-
|
2442 |
-
|
2443 |
-
|
2444 |
-
|
2445 |
-
|
2446 |
-
|
2447 |
-
|
2448 |
-
trigram_chain = {}
|
2449 |
-
for i in range(len(words) - 2):
|
2450 |
-
key = (words[i], words[i + 1])
|
2451 |
-
next_word = words[i + 2]
|
2452 |
-
if key not in trigram_chain:
|
2453 |
-
trigram_chain[key] = []
|
2454 |
-
trigram_chain[key].append(next_word)
|
2455 |
-
|
2456 |
-
|
2457 |
-
|
2458 |
-
|
2459 |
-
|
2460 |
-
|
2461 |
-
|
2462 |
-
|
2463 |
-
|
2464 |
-
|
2465 |
-
|
2466 |
-
|
2467 |
-
|
2468 |
-
|
2469 |
-
|
2470 |
-
|
2471 |
-
def generate_text(length):
|
2472 |
-
if len(words) < 2:
|
2473 |
-
return ""
|
2474 |
-
key = random.choice(list(trigram_chain.keys()))
|
2475 |
-
result = [key[0], key[1]]
|
2476 |
-
for _ in range(length - 2):
|
2477 |
-
if key in trigram_chain:
|
2478 |
-
next_word = random.choice(trigram_chain[key])
|
2479 |
-
result.append(next_word)
|
2480 |
-
key = (key[1], next_word)
|
2481 |
-
else:
|
2482 |
-
break
|
2483 |
-
return " ".join(result)
|
2484 |
-
|
2485 |
-
|
2486 |
-
|
2487 |
-
|
2488 |
-
|
2489 |
-
|
2490 |
-
|
2491 |
-
|
2492 |
-
|
2493 |
-
|
2494 |
-
|
2495 |
-
|
2496 |
-
|
2497 |
-
|
2498 |
-
|
2499 |
-
|
2500 |
-
class NeuralNetwork:
|
2501 |
-
def __init__(self, input_size, hidden_size1, hidden_size2, output_size):
|
2502 |
-
self.input_size = input_size
|
2503 |
-
self.hidden_size1 = hidden_size1
|
2504 |
-
self.hidden_size2 = hidden_size2
|
2505 |
-
self.output_size = output_size
|
2506 |
-
self.weights_input_hidden1 = [
|
2507 |
-
[random.random() for _ in range(input_size)] for _ in range(hidden_size1)
|
2508 |
-
]
|
2509 |
-
self.weights_hidden1_hidden2 = [
|
2510 |
-
[random.random() for _ in range(hidden_size1)] for _ in range(hidden_size2)
|
2511 |
-
]
|
2512 |
-
self.weights_hidden2_output = [
|
2513 |
-
[random.random() for _ in range(hidden_size2)] for _ in range(output_size)
|
2514 |
-
]
|
2515 |
-
self.bias_hidden1 = [random.random() for _ in range(hidden_size1)]
|
2516 |
-
self.bias_hidden2 = [random.random() for _ in range(hidden_size2)]
|
2517 |
-
self.bias_output = [random.random() for _ in range(output_size)]
|
2518 |
-
|
2519 |
-
|
2520 |
-
|
2521 |
-
|
2522 |
-
|
2523 |
-
|
2524 |
-
|
2525 |
-
|
2526 |
-
def sigmoid(self, x):
|
2527 |
-
return 1 / (1 + math.exp(-x))
|
2528 |
-
|
2529 |
-
|
2530 |
-
|
2531 |
-
|
2532 |
-
|
2533 |
-
|
2534 |
-
|
2535 |
-
|
2536 |
-
def sigmoid_derivative(self, x):
|
2537 |
-
return x * (1 - x)
|
2538 |
-
|
2539 |
-
|
2540 |
-
|
2541 |
-
|
2542 |
-
|
2543 |
-
|
2544 |
-
|
2545 |
-
|
2546 |
-
def forward(self, inputs):
|
2547 |
-
self.hidden_input1 = [
|
2548 |
-
sum(inputs[i] * self.weights_input_hidden1[j][i] for i in range(self.input_size)) + self.bias_hidden1[j]
|
2549 |
-
for j in range(self.hidden_size1)
|
2550 |
-
]
|
2551 |
-
self.hidden_output1 = [self.sigmoid(x) for x in self.hidden_input1]
|
2552 |
-
self.hidden_input2 = [
|
2553 |
-
sum(self.hidden_output1[i] * self.weights_hidden1_hidden2[j][i] for i in range(self.hidden_size1)) + self.bias_hidden2[j]
|
2554 |
-
for j in range(self.hidden_size2)
|
2555 |
-
]
|
2556 |
-
self.hidden_output2 = [self.sigmoid(x) for x in self.hidden_input2]
|
2557 |
-
self.output_input = [
|
2558 |
-
sum(self.hidden_output2[i] * self.weights_hidden2_output[j][i] for i in range(self.hidden_size2)) + self.bias_output[j]
|
2559 |
-
for j in range(self.output_size)
|
2560 |
-
]
|
2561 |
-
self.output_output = [self.sigmoid(x) for x in self.output_input]
|
2562 |
-
return self.output_output
|
2563 |
-
|
2564 |
-
|
2565 |
-
|
2566 |
-
|
2567 |
-
|
2568 |
-
|
2569 |
-
|
2570 |
-
|
2571 |
-
def backward(self, inputs, target, learning_rate=0.1):
|
2572 |
-
output_errors = [target[i] - self.output_output[i] for i in range(self.output_size)]
|
2573 |
-
output_deltas = [output_errors[i] * self.sigmoid_derivative(self.output_output[i])
|
2574 |
-
for i in range(self.output_size)]
|
2575 |
-
hidden2_errors = [
|
2576 |
-
sum(output_deltas[k] * self.weights_hidden2_output[k][j] for k in range(self.output_size))
|
2577 |
-
for j in range(self.hidden_size2)
|
2578 |
-
]
|
2579 |
-
hidden2_deltas = [hidden2_errors[j] * self.sigmoid_derivative(self.hidden_output2[j])
|
2580 |
-
for j in range(self.hidden_size2)]
|
2581 |
-
hidden1_errors = [
|
2582 |
-
sum(hidden2_deltas[k] * self.weights_hidden1_hidden2[k][j] for k in range(self.hidden_size2))
|
2583 |
-
for j in range(self.hidden_size1)
|
2584 |
-
]
|
2585 |
-
hidden1_deltas = [hidden1_errors[j] * self.sigmoid_derivative(self.hidden_output1[j])
|
2586 |
-
for j in range(self.hidden_size1)]
|
2587 |
-
|
2588 |
-
|
2589 |
-
|
2590 |
-
|
2591 |
-
|
2592 |
-
|
2593 |
-
|
2594 |
-
|
2595 |
-
for i in range(self.output_size):
|
2596 |
-
for j in range(self.hidden_size2):
|
2597 |
-
self.weights_hidden2_output[i][j] += learning_rate * output_deltas[i] * self.hidden_output2[j]
|
2598 |
-
self.bias_output[i] += learning_rate * output_deltas[i]
|
2599 |
-
|
2600 |
-
|
2601 |
-
|
2602 |
-
|
2603 |
-
|
2604 |
-
|
2605 |
-
|
2606 |
-
|
2607 |
-
for i in range(self.hidden_size2):
|
2608 |
-
for j in range(self.hidden_size1):
|
2609 |
-
self.weights_hidden1_hidden2[i][j] += learning_rate * hidden2_deltas[i] * self.hidden_output1[j]
|
2610 |
-
self.bias_hidden2[i] += learning_rate * hidden2_deltas[i]
|
2611 |
-
|
2612 |
-
|
2613 |
-
|
2614 |
-
|
2615 |
-
|
2616 |
-
|
2617 |
-
|
2618 |
-
|
2619 |
-
for i in range(self.hidden_size1):
|
2620 |
-
for j in range(self.input_size):
|
2621 |
-
self.weights_input_hidden1[i][j] += learning_rate * hidden1_deltas[i] * inputs[j]
|
2622 |
-
self.bias_hidden1[i] += learning_rate * hidden1_deltas[i]
|
2623 |
-
|
2624 |
-
|
2625 |
-
|
2626 |
-
|
2627 |
-
|
2628 |
-
|
2629 |
-
|
2630 |
-
|
2631 |
-
|
2632 |
-
|
2633 |
-
|
2634 |
-
|
2635 |
-
|
2636 |
-
|
2637 |
-
|
2638 |
-
|
2639 |
-
class RecurrentNeuralNetwork:
|
2640 |
-
def __init__(self, input_size, hidden_size, output_size):
|
2641 |
-
self.input_size = input_size
|
2642 |
-
self.hidden_size = hidden_size
|
2643 |
-
self.output_size = output_size
|
2644 |
-
self.weights_input_hidden = [
|
2645 |
-
[random.random() for _ in range(input_size)] for _ in range(hidden_size)
|
2646 |
-
]
|
2647 |
-
self.weights_hidden_hidden = [
|
2648 |
-
[random.random() for _ in range(hidden_size)] for _ in range(hidden_size)
|
2649 |
-
]
|
2650 |
-
self.weights_hidden_output = [
|
2651 |
-
[random.random() for _ in range(hidden_size)] for _ in range(output_size)
|
2652 |
-
]
|
2653 |
-
self.bias_hidden = [random.random() for _ in range(hidden_size)]
|
2654 |
-
self.bias_output = [random.random() for _ in range(output_size)]
|
2655 |
-
|
2656 |
-
|
2657 |
-
|
2658 |
-
|
2659 |
-
|
2660 |
-
|
2661 |
-
|
2662 |
-
|
2663 |
-
def sigmoid(self, x):
|
2664 |
-
return 1 / (1 + math.exp(-x))
|
2665 |
-
|
2666 |
-
|
2667 |
-
|
2668 |
-
|
2669 |
-
|
2670 |
-
|
2671 |
-
|
2672 |
-
|
2673 |
-
def sigmoid_derivative(self, x):
|
2674 |
-
return x * (1 - x)
|
2675 |
-
|
2676 |
-
|
2677 |
-
|
2678 |
-
|
2679 |
-
|
2680 |
-
|
2681 |
-
|
2682 |
-
|
2683 |
-
def forward(self, inputs):
|
2684 |
-
self.hidden_state = [0] * self.hidden_size
|
2685 |
-
for _ in range(2):
|
2686 |
-
for i in range(len(inputs)):
|
2687 |
-
current_input = [0] * self.input_size
|
2688 |
-
current_input[i] = inputs[i]
|
2689 |
-
combined = [
|
2690 |
-
sum(current_input[k] * self.weights_input_hidden[j][k] for k in range(self.input_size)) +
|
2691 |
-
sum(self.hidden_state[k] * self.weights_hidden_hidden[j][k] for k in range(self.hidden_size)) +
|
2692 |
-
self.bias_hidden[j]
|
2693 |
-
for j in range(self.hidden_size)
|
2694 |
-
]
|
2695 |
-
self.hidden_state = [self.sigmoid(val) for val in combined]
|
2696 |
-
output = [
|
2697 |
-
sum(self.hidden_state[k] * self.weights_hidden_output[i][k] for k in range(self.hidden_size)) +
|
2698 |
-
self.bias_output[i]
|
2699 |
-
for i in range(self.output_size)
|
2700 |
-
]
|
2701 |
-
return [self.sigmoid(o) for o in output]
|
2702 |
-
|
2703 |
-
|
2704 |
-
|
2705 |
-
|
2706 |
-
|
2707 |
-
|
2708 |
-
|
2709 |
-
|
2710 |
-
def backward(self, inputs, target, learning_rate=0.1):
|
2711 |
-
output = self.forward(inputs)
|
2712 |
-
output_errors = [target[i] - output[i] for i in range(self.output_size)]
|
2713 |
-
output_deltas = [output_errors[i] * self.sigmoid_derivative(output[i])
|
2714 |
-
for i in range(self.output_size)]
|
2715 |
-
hidden_errors = [
|
2716 |
-
sum(output_deltas[k] * self.weights_hidden_output[k][j] for k in range(self.output_size))
|
2717 |
-
for j in range(self.hidden_size)
|
2718 |
-
]
|
2719 |
-
hidden_deltas = [hidden_errors[j] * self.sigmoid_derivative(self.hidden_state[j])
|
2720 |
-
for j in range(self.hidden_size)]
|
2721 |
-
|
2722 |
-
|
2723 |
-
|
2724 |
-
|
2725 |
-
|
2726 |
-
|
2727 |
-
|
2728 |
-
|
2729 |
-
for i in range(self.output_size):
|
2730 |
-
for j in range(self.hidden_size):
|
2731 |
-
self.weights_hidden_output[i][j] += learning_rate * output_deltas[i] * self.hidden_state[j]
|
2732 |
-
self.bias_output[i] += learning_rate * output_deltas[i]
|
2733 |
-
|
2734 |
-
|
2735 |
-
|
2736 |
-
|
2737 |
-
|
2738 |
-
|
2739 |
-
|
2740 |
-
|
2741 |
-
for j in range(self.hidden_size):
|
2742 |
-
for k in range(self.input_size):
|
2743 |
-
self.weights_input_hidden[j][k] += learning_rate * hidden_deltas[j] * (inputs[k] if k < len(inputs) else 0)
|
2744 |
-
self.bias_hidden[j] += learning_rate * hidden_deltas[j]
|
2745 |
-
return output_errors
|
2746 |
-
|
2747 |
-
|
2748 |
-
|
2749 |
-
|
2750 |
-
|
2751 |
-
|
2752 |
-
|
2753 |
-
|
2754 |
-
|
2755 |
-
|
2756 |
-
|
2757 |
-
|
2758 |
-
|
2759 |
-
|
2760 |
-
|
2761 |
-
|
2762 |
-
class ConvolutionalNeuralNetwork:
|
2763 |
-
def __init__(self, input_length, kernel_size1, kernel_size2, output_size):
|
2764 |
-
self.input_length = input_length
|
2765 |
-
self.kernel_size1 = kernel_size1
|
2766 |
-
self.kernel_size2 = kernel_size2
|
2767 |
-
self.output_size = output_size
|
2768 |
-
self.kernel1 = [random.random() for _ in range(kernel_size1)]
|
2769 |
-
self.bias1 = random.random()
|
2770 |
-
self.kernel2 = [random.random() for _ in range(kernel_size2)]
|
2771 |
-
self.bias2 = random.random()
|
2772 |
-
self.weights_output = [
|
2773 |
-
[random.random() for _ in range(input_length - kernel_size1 - kernel_size2 + 2)]
|
2774 |
-
for _ in range(output_size)
|
2775 |
-
]
|
2776 |
-
self.bias_output = [random.random() for _ in range(output_size)]
|
2777 |
-
|
2778 |
-
|
2779 |
-
|
2780 |
-
|
2781 |
-
|
2782 |
-
|
2783 |
-
|
2784 |
-
|
2785 |
-
def relu(self, x):
|
2786 |
-
return x if x > 0 else 0
|
2787 |
-
|
2788 |
-
|
2789 |
-
|
2790 |
-
|
2791 |
-
|
2792 |
-
|
2793 |
-
|
2794 |
-
|
2795 |
-
def relu_derivative(self, x):
|
2796 |
-
return 1 if x > 0 else 0
|
2797 |
-
|
2798 |
-
|
2799 |
-
|
2800 |
-
|
2801 |
-
|
2802 |
-
|
2803 |
-
|
2804 |
-
|
2805 |
-
def convolve(self, inputs, kernel, bias):
|
2806 |
-
conv_output = []
|
2807 |
-
kernel_size = len(kernel)
|
2808 |
-
for i in range(len(inputs) - kernel_size + 1):
|
2809 |
-
s = sum(inputs[i + j] * kernel[j] for j in range(kernel_size)) + bias
|
2810 |
-
conv_output.append(self.relu(s))
|
2811 |
-
return conv_output
|
2812 |
-
|
2813 |
-
|
2814 |
-
|
2815 |
-
|
2816 |
-
|
2817 |
-
|
2818 |
-
|
2819 |
-
|
2820 |
-
def forward(self, inputs):
|
2821 |
-
conv1 = self.convolve(inputs, self.kernel1, self.bias1)
|
2822 |
-
conv2 = self.convolve(conv1, self.kernel2, self.bias2)
|
2823 |
-
fc_input = conv2
|
2824 |
-
output = [
|
2825 |
-
sum(fc_input[j] * self.weights_output[i][j] for j in range(len(fc_input))) + self.bias_output[i]
|
2826 |
-
for i in range(self.output_size)
|
2827 |
-
]
|
2828 |
-
return [self.relu(o) for o in output]
|
2829 |
-
|
2830 |
-
|
2831 |
-
|
2832 |
-
|
2833 |
-
|
2834 |
-
|
2835 |
-
|
2836 |
-
|
2837 |
-
def backward(self, inputs, target, learning_rate=0.1):
|
2838 |
-
output = self.forward(inputs)
|
2839 |
-
output_errors = [target[i] - output[i] for i in range(self.output_size)]
|
2840 |
-
for i in range(self.output_size):
|
2841 |
-
for j in range(len(inputs) - self.kernel_size1 - self.kernel_size2 + 2):
|
2842 |
-
self.weights_output[i][j] += learning_rate * output_errors[i]
|
2843 |
-
self.bias_output[i] += learning_rate * output_errors[i]
|
2844 |
-
return output_errors
|
2845 |
-
|
2846 |
-
|
2847 |
-
|
2848 |
-
|
2849 |
-
|
2850 |
-
|
2851 |
-
|
2852 |
-
|
2853 |
-
|
2854 |
-
|
2855 |
-
|
2856 |
-
|
2857 |
-
|
2858 |
-
|
2859 |
-
|
2860 |
-
|
2861 |
-
class GeneticAlgorithm:
|
2862 |
-
def __init__(self, population_size, gene_length):
|
2863 |
-
self.population_size = population_size
|
2864 |
-
self.gene_length = gene_length
|
2865 |
-
self.population = [
|
2866 |
-
[random.random() for _ in range(gene_length)] for _ in range(population_size)
|
2867 |
-
]
|
2868 |
-
|
2869 |
-
|
2870 |
-
|
2871 |
-
|
2872 |
-
|
2873 |
-
|
2874 |
-
|
2875 |
-
|
2876 |
-
def fitness(self, individual):
|
2877 |
-
return -sum((gene - PHI) ** 2 for gene in individual)
|
2878 |
-
|
2879 |
-
|
2880 |
-
|
2881 |
-
|
2882 |
-
|
2883 |
-
|
2884 |
-
|
2885 |
-
|
2886 |
-
def selection(self):
|
2887 |
-
selected = sorted(self.population, key=self.fitness, reverse=True)
|
2888 |
-
return selected[: self.population_size // 2]
|
2889 |
-
|
2890 |
-
|
2891 |
-
|
2892 |
-
|
2893 |
-
|
2894 |
-
|
2895 |
-
|
2896 |
-
|
2897 |
-
def crossover(self, parent1, parent2):
|
2898 |
-
point = random.randint(1, self.gene_length - 1)
|
2899 |
-
child = parent1[:point] + parent2[point:]
|
2900 |
-
return child
|
2901 |
-
|
2902 |
-
|
2903 |
-
|
2904 |
-
|
2905 |
-
|
2906 |
-
|
2907 |
-
|
2908 |
-
|
2909 |
-
def mutate(self, individual, mutation_rate=0.01):
|
2910 |
-
for i in range(self.gene_length):
|
2911 |
-
if random.random() < mutation_rate:
|
2912 |
-
individual[i] = random.random()
|
2913 |
-
return individual
|
2914 |
-
|
2915 |
-
|
2916 |
-
|
2917 |
-
|
2918 |
-
|
2919 |
-
|
2920 |
-
|
2921 |
-
|
2922 |
-
def evolve(self, generations):
|
2923 |
-
for _ in range(generations):
|
2924 |
-
selected = self.selection()
|
2925 |
-
new_population = selected[:]
|
2926 |
-
while len(new_population) < self.population_size:
|
2927 |
-
parent1 = random.choice(selected)
|
2928 |
-
parent2 = random.choice(selected)
|
2929 |
-
child = self.crossover(parent1, parent2)
|
2930 |
-
child = self.mutate(child)
|
2931 |
-
new_population.append(child)
|
2932 |
-
self.population = new_population
|
2933 |
-
best = max(self.population, key=self.fitness)
|
2934 |
-
return best, self.fitness(best)
|
2935 |
-
|
2936 |
-
|
2937 |
-
|
2938 |
-
|
2939 |
-
|
2940 |
-
|
2941 |
-
|
2942 |
-
|
2943 |
-
|
2944 |
-
|
2945 |
-
|
2946 |
-
|
2947 |
-
|
2948 |
-
|
2949 |
-
|
2950 |
-
|
2951 |
-
class LSTM:
|
2952 |
-
def __init__(self, input_size, hidden_size, output_size):
|
2953 |
-
self.input_size = input_size
|
2954 |
-
self.hidden_size = hidden_size
|
2955 |
-
self.output_size = output_size
|
2956 |
-
self.W_i = [[random.random() for _ in range(input_size)] for _ in range(hidden_size)]
|
2957 |
-
self.U_i = [[random.random() for _ in range(hidden_size)] for _ in range(hidden_size)]
|
2958 |
-
self.b_i = [random.random() for _ in range(hidden_size)]
|
2959 |
-
self.W_f = [[random.random() for _ in range(input_size)] for _ in range(hidden_size)]
|
2960 |
-
self.U_f = [[random.random() for _ in range(hidden_size)] for _ in range(hidden_size)]
|
2961 |
-
self.b_f = [random.random() for _ in range(hidden_size)]
|
2962 |
-
self.W_o = [[random.random() for _ in range(input_size)] for _ in range(hidden_size)]
|
2963 |
-
self.U_o = [[random.random() for _ in range(hidden_size)] for _ in range(hidden_size)]
|
2964 |
-
self.b_o = [random.random() for _ in range(hidden_size)]
|
2965 |
-
self.W_c = [[random.random() for _ in range(input_size)] for _ in range(hidden_size)]
|
2966 |
-
self.U_c = [[random.random() for _ in range(hidden_size)] for _ in range(hidden_size)]
|
2967 |
-
self.b_c = [random.random() for _ in range(hidden_size)]
|
2968 |
-
self.W_y = [[random.random() for _ in range(hidden_size)] for _ in range(output_size)]
|
2969 |
-
self.b_y = [random.random() for _ in range(output_size)]
|
2970 |
-
|
2971 |
-
|
2972 |
-
|
2973 |
-
|
2974 |
-
|
2975 |
-
|
2976 |
-
|
2977 |
-
|
2978 |
-
def sigmoid(self, x):
|
2979 |
-
return 1 / (1 + math.exp(-x))
|
2980 |
-
|
2981 |
-
|
2982 |
-
|
2983 |
-
|
2984 |
-
|
2985 |
-
|
2986 |
-
|
2987 |
-
|
2988 |
-
def forward(self, inputs):
|
2989 |
-
h = [0] * self.hidden_size
|
2990 |
-
c = [0] * self.hidden_size
|
2991 |
-
|
2992 |
-
|
2993 |
-
|
2994 |
-
|
2995 |
-
|
2996 |
-
|
2997 |
-
|
2998 |
-
|
2999 |
-
i_gate = []
|
3000 |
-
for j in range(self.hidden_size):
|
3001 |
-
s = sum(inputs[k] * self.W_i[j][k] for k in range(self.input_size)) + \
|
3002 |
-
sum(h[k] * self.U_i[j][k] for k in range(self.hidden_size)) + self.b_i[j]
|
3003 |
-
i_gate.append(self.sigmoid(s))
|
3004 |
-
|
3005 |
-
|
3006 |
-
|
3007 |
-
|
3008 |
-
|
3009 |
-
|
3010 |
-
|
3011 |
-
|
3012 |
-
f_gate = []
|
3013 |
-
for j in range(self.hidden_size):
|
3014 |
-
s = sum(inputs[k] * self.W_f[j][k] for k in range(self.input_size)) + \
|
3015 |
-
sum(h[k] * self.U_f[j][k] for k in range(self.hidden_size)) + self.b_f[j]
|
3016 |
-
f_gate.append(self.sigmoid(s))
|
3017 |
-
|
3018 |
-
|
3019 |
-
|
3020 |
-
|
3021 |
-
|
3022 |
-
|
3023 |
-
|
3024 |
-
|
3025 |
-
o_gate = []
|
3026 |
-
for j in range(self.hidden_size):
|
3027 |
-
s = sum(inputs[k] * self.W_o[j][k] for k in range(self.input_size)) + \
|
3028 |
-
sum(h[k] * self.U_o[j][k] for k in range(self.hidden_size)) + self.b_o[j]
|
3029 |
-
o_gate.append(self.sigmoid(s))
|
3030 |
-
|
3031 |
-
|
3032 |
-
|
3033 |
-
|
3034 |
-
|
3035 |
-
|
3036 |
-
|
3037 |
-
|
3038 |
-
g_gate = []
|
3039 |
-
for j in range(self.hidden_size):
|
3040 |
-
s = sum(inputs[k] * self.W_c[j][k] for k in range(self.input_size)) + \
|
3041 |
-
sum(h[k] * self.U_c[j][k] for k in range(self.hidden_size)) + self.b_c[j]
|
3042 |
-
g_gate.append(math.tanh(s))
|
3043 |
-
|
3044 |
-
|
3045 |
-
|
3046 |
-
|
3047 |
-
|
3048 |
-
|
3049 |
-
|
3050 |
-
|
3051 |
-
c = [f_gate[j] * c[j] + i_gate[j] * g_gate[j] for j in range(self.hidden_size)]
|
3052 |
-
h = [o_gate[j] * math.tanh(c[j]) for j in range(self.hidden_size)]
|
3053 |
-
|
3054 |
-
|
3055 |
-
|
3056 |
-
|
3057 |
-
|
3058 |
-
|
3059 |
-
|
3060 |
-
|
3061 |
-
y = []
|
3062 |
-
for i in range(self.output_size):
|
3063 |
-
s = sum(h[j] * self.W_y[i][j] for j in range(self.hidden_size)) + self.b_y[i]
|
3064 |
-
y.append(self.sigmoid(s))
|
3065 |
-
return y
|
3066 |
-
|
3067 |
-
|
3068 |
-
|
3069 |
-
|
3070 |
-
|
3071 |
-
|
3072 |
-
|
3073 |
-
|
3074 |
-
|
3075 |
-
|
3076 |
-
|
3077 |
-
|
3078 |
-
|
3079 |
-
|
3080 |
-
|
3081 |
-
|
3082 |
-
class Transformer:
|
3083 |
-
def __init__(self, d_model, num_tokens):
|
3084 |
-
self.d_model = d_model
|
3085 |
-
self.num_tokens = num_tokens
|
3086 |
-
self.W_q = [[random.random() for _ in range(d_model)] for _ in range(d_model)]
|
3087 |
-
self.W_k = [[random.random() for _ in range(d_model)] for _ in range(d_model)]
|
3088 |
-
self.W_v = [[random.random() for _ in range(d_model)] for _ in range(d_model)]
|
3089 |
-
self.W_o = [[random.random() for _ in range(d_model)] for _ in range(d_model)]
|
3090 |
-
|
3091 |
-
|
3092 |
-
|
3093 |
-
|
3094 |
-
|
3095 |
-
|
3096 |
-
|
3097 |
-
|
3098 |
-
def dot_product(self, a, b):
|
3099 |
-
return sum(x * y for x, y in zip(a, b))
|
3100 |
-
|
3101 |
-
|
3102 |
-
|
3103 |
-
|
3104 |
-
|
3105 |
-
|
3106 |
-
|
3107 |
-
|
3108 |
-
def matmul_vector(self, matrix, vector):
|
3109 |
-
return [sum(matrix[i][j] * vector[j] for j in range(len(vector))) for i in range(len(matrix))]
|
3110 |
-
|
3111 |
-
|
3112 |
-
|
3113 |
-
|
3114 |
-
|
3115 |
-
|
3116 |
-
|
3117 |
-
|
3118 |
-
def softmax(self, x):
|
3119 |
-
m = max(x)
|
3120 |
-
exps = [math.exp(i - m) for i in x]
|
3121 |
-
s = sum(exps)
|
3122 |
-
return [j / s for j in exps]
|
3123 |
-
|
3124 |
-
|
3125 |
-
|
3126 |
-
|
3127 |
-
|
3128 |
-
|
3129 |
-
|
3130 |
-
|
3131 |
-
def forward(self, inputs):
|
3132 |
-
queries = [self.matmul_vector(self.W_q, token) for token in inputs]
|
3133 |
-
keys = [self.matmul_vector(self.W_k, token) for token in inputs]
|
3134 |
-
values = [self.matmul_vector(self.W_v, token) for token in inputs]
|
3135 |
-
outputs = []
|
3136 |
-
for i in range(len(inputs)):
|
3137 |
-
scores = []
|
3138 |
-
for j in range(len(inputs)):
|
3139 |
-
score = self.dot_product(queries[i], keys[j]) / math.sqrt(self.d_model)
|
3140 |
-
scores.append(score)
|
3141 |
-
attn = self.softmax(scores)
|
3142 |
-
attn_output = [0] * self.d_model
|
3143 |
-
for j in range(len(inputs)):
|
3144 |
-
for k in range(self.d_model):
|
3145 |
-
attn_output[k] += attn[j] * values[j][k]
|
3146 |
-
out = self.matmul_vector(self.W_o, attn_output)
|
3147 |
-
outputs.append(out)
|
3148 |
-
avg_output = [sum(x[k] for x in outputs) / len(outputs) for k in range(self.d_model)]
|
3149 |
-
proj_weights = [[random.random() for _ in range(self.d_model)] for _ in range(self.num_tokens)]
|
3150 |
-
proj_bias = [random.random() for _ in range(self.num_tokens)]
|
3151 |
-
token_scores = [
|
3152 |
-
sum(avg_output[k] * proj_weights[i][k] for k in range(self.d_model)) + proj_bias[i]
|
3153 |
-
for i in range(self.num_tokens)
|
3154 |
-
]
|
3155 |
-
token_output = [1 / (1 + math.exp(-score)) for score in token_scores]
|
3156 |
-
return token_output
|
3157 |
-
|
3158 |
-
|
3159 |
-
|
3160 |
-
|
3161 |
-
|
3162 |
-
|
3163 |
-
|
3164 |
-
|
3165 |
-
|
3166 |
-
|
3167 |
-
|
3168 |
-
|
3169 |
-
|
3170 |
-
|
3171 |
-
|
3172 |
-
|
3173 |
-
unique_words = list(set(words))
|
3174 |
-
word_to_index = {word: i for i, word in enumerate(unique_words)}
|
3175 |
-
index_to_word = {i: word for word, i in word_to_index.items()}
|
3176 |
-
|
3177 |
-
|
3178 |
-
|
3179 |
-
|
3180 |
-
|
3181 |
-
|
3182 |
-
|
3183 |
-
|
3184 |
-
input_data = [[0] * len(unique_words) for _ in range(len(words) - 2)]
|
3185 |
-
for i in range(len(words) - 2):
|
3186 |
-
input_data[i][word_to_index[words[i]]] = 1
|
3187 |
-
|
3188 |
-
|
3189 |
-
|
3190 |
-
|
3191 |
-
|
3192 |
-
|
3193 |
-
|
3194 |
-
|
3195 |
-
output_data = [[0] * len(unique_words) for _ in range(len(words) - 2)]
|
3196 |
-
for i in range(len(words) - 2):
|
3197 |
-
output_data[i][word_to_index[words[i + 1]]] = 1
|
3198 |
-
|
3199 |
-
|
3200 |
-
|
3201 |
-
|
3202 |
-
|
3203 |
-
|
3204 |
-
|
3205 |
-
|
3206 |
-
input_size = len(unique_words)
|
3207 |
-
hidden_size1 = round(PHI * input_size)
|
3208 |
-
hidden_size2 = round(PHI * hidden_size1)
|
3209 |
-
output_size = len(unique_words)
|
3210 |
-
|
3211 |
-
|
3212 |
-
|
3213 |
-
|
3214 |
-
|
3215 |
-
|
3216 |
-
|
3217 |
-
|
3218 |
-
nn = NeuralNetwork(input_size, hidden_size1, hidden_size2, output_size)
|
3219 |
-
epochs = round(100 * PHI)
|
3220 |
-
for epoch in range(epochs):
|
3221 |
-
for i in range(len(input_data)):
|
3222 |
-
nn.forward(input_data[i])
|
3223 |
-
nn.backward(input_data[i], output_data[i], learning_rate=0.1)
|
3224 |
-
if (epoch + 1) % round(PHI) == 0:
|
3225 |
-
print("Feedforward NN Epoch {}/{}".format(epoch + 1, epochs))
|
3226 |
-
|
3227 |
-
|
3228 |
-
|
3229 |
-
|
3230 |
-
|
3231 |
-
|
3232 |
-
|
3233 |
-
|
3234 |
-
rnn = RecurrentNeuralNetwork(input_size, hidden_size1, output_size)
|
3235 |
-
rnn_output = rnn.forward(input_data[0])
|
3236 |
-
print("Recurrent NN Output:", rnn_output)
|
3237 |
-
|
3238 |
-
|
3239 |
-
|
3240 |
-
|
3241 |
-
|
3242 |
-
|
3243 |
-
|
3244 |
-
|
3245 |
-
kernel_size1 = round(3 * PHI)
|
3246 |
-
kernel_size2 = round(2 * PHI)
|
3247 |
-
cnn = ConvolutionalNeuralNetwork(input_length=round(10 * PHI), kernel_size1=kernel_size1,
|
3248 |
-
kernel_size2=kernel_size2, output_size=output_size)
|
3249 |
-
sample_input = [random.random() for _ in range(round(10 * PHI))]
|
3250 |
-
cnn_output = cnn.forward(sample_input)
|
3251 |
-
print("Convolutional NN Output:", cnn_output)
|
3252 |
-
|
3253 |
-
|
3254 |
-
|
3255 |
-
|
3256 |
-
|
3257 |
-
|
3258 |
-
|
3259 |
-
|
3260 |
-
population_size = round(10 * PHI)
|
3261 |
-
ga = GeneticAlgorithm(population_size, round(PHI * 5))
|
3262 |
-
best_individual, best_fitness = ga.evolve(round(50 * PHI))
|
3263 |
-
print("Genetic Algorithm Best Individual:", best_individual, "Fitness:", best_fitness)
|
3264 |
-
|
3265 |
-
|
3266 |
-
|
3267 |
-
|
3268 |
-
|
3269 |
-
|
3270 |
-
|
3271 |
-
|
3272 |
-
lstm_hidden_size = round(PHI * input_size)
|
3273 |
-
lstm = LSTM(input_size, lstm_hidden_size, output_size)
|
3274 |
-
lstm_output = lstm.forward(input_data[0])
|
3275 |
-
print("LSTM Output:", lstm_output)
|
3276 |
-
|
3277 |
-
|
3278 |
-
|
3279 |
-
|
3280 |
-
|
3281 |
-
|
3282 |
-
|
3283 |
-
|
3284 |
-
transformer_d_model = round(PHI * input_size)
|
3285 |
-
transformer = Transformer(transformer_d_model, output_size)
|
3286 |
-
transformer_input = []
|
3287 |
-
for i in range(len(unique_words)):
|
3288 |
-
vec = [0] * transformer_d_model
|
3289 |
-
if i < transformer_d_model:
|
3290 |
-
vec[i] = 1
|
3291 |
-
transformer_input.append(vec)
|
3292 |
-
transformer_output = transformer.forward(transformer_input)
|
3293 |
-
print("Transformer Output:", transformer_output)
|
3294 |
-
|
3295 |
-
|
3296 |
-
|
3297 |
-
|
3298 |
-
|
3299 |
-
|
3300 |
-
|
3301 |
-
|
3302 |
-
|
3303 |
-
|
3304 |
-
|
3305 |
-
|
3306 |
-
|
3307 |
-
|
3308 |
-
|
3309 |
-
|
3310 |
-
def advanced_text_generation(input_vector):
|
3311 |
-
ff_output = nn.forward(input_vector)
|
3312 |
-
rnn_out = rnn.forward(input_vector)
|
3313 |
-
lstm_out = lstm.forward(input_vector)
|
3314 |
-
transformer_out = transformer.forward([input_vector])
|
3315 |
-
combined = [
|
3316 |
-
(ff_output[i] + rnn_out[i] + lstm_out[i] + transformer_out[i]) / 4
|
3317 |
-
for i in range(len(ff_output))
|
3318 |
-
]
|
3319 |
-
predicted_index = combined.index(max(combined))
|
3320 |
-
predicted_word = index_to_word[predicted_index]
|
3321 |
-
long_text = ""
|
3322 |
-
current_length = round(10 * PHI)
|
3323 |
-
for _ in range(5):
|
3324 |
-
segment = generate_text(current_length)
|
3325 |
-
long_text += segment + " "
|
3326 |
-
current_length = round(current_length * PHI)
|
3327 |
-
return long_text + predicted_word
|
3328 |
-
|
3329 |
-
|
3330 |
-
|
3331 |
-
|
3332 |
-
|
3333 |
-
|
3334 |
-
|
3335 |
-
|
3336 |
-
|
3337 |
-
|
3338 |
-
|
3339 |
-
|
3340 |
-
|
3341 |
-
|
3342 |
-
|
3343 |
-
|
3344 |
-
def chat():
|
3345 |
-
print("FiPhi-NeuralMark ACC Initialized")
|
3346 |
-
base_length = round(5 * PHI)
|
3347 |
-
while True:
|
3348 |
-
user_input = input("\nYou: ")
|
3349 |
-
if user_input.lower() == "exit":
|
3350 |
-
print("Goodbye!")
|
3351 |
-
break
|
3352 |
-
user_input_tokens = user_input.split()
|
3353 |
-
input_vector = [0] * len(unique_words)
|
3354 |
-
for word in user_input_tokens:
|
3355 |
-
if word in word_to_index:
|
3356 |
-
input_vector[word_to_index[word]] = 1
|
3357 |
-
response = advanced_text_generation(input_vector)
|
3358 |
-
print("FiPhi-NeuralMark:", response)
|
3359 |
-
|
3360 |
-
|
3361 |
-
|
3362 |
-
|
3363 |
-
|
3364 |
-
|
3365 |
-
|
3366 |
-
|
3367 |
-
|
3368 |
-
|
3369 |
-
|
3370 |
-
|
3371 |
-
|
3372 |
-
|
3373 |
-
|
3374 |
-
|
3375 |
-
chat()
|
3376 |
-
|
3377 |
-
|
3378 |
import gradio as gr
|
3379 |
from openai import OpenAI
|
3380 |
|
|
|
1648 |
print("FiPhi-NeuralMark ACC Initialized")
|
1649 |
base_length = round(5 * PHI)
|
1650 |
while True:
|
1651 |
+
user_input = "input"
|
1652 |
if user_input.lower() == "exit":
|
1653 |
print("Goodbye!")
|
1654 |
break
|
|
|
1696 |
|
1697 |
|
1698 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1699 |
import gradio as gr
|
1700 |
from openai import OpenAI
|
1701 |
|