Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -5,1690 +5,6 @@
|
|
5 |
|
6 |
|
7 |
|
8 |
-
# coding=utf-8
|
9 |
-
# Copyright 2025 The ACC Team Authors
|
10 |
-
#
|
11 |
-
# Licensed under the Apache License, Version 2.0 (the "License");
|
12 |
-
# you may not use this file except in compliance with the License.
|
13 |
-
# You may obtain a copy of the License at
|
14 |
-
#
|
15 |
-
# http://www.apache.org/licenses/LICENSE-2.0
|
16 |
-
#
|
17 |
-
# Unless required by applicable law or agreed to in writing, software
|
18 |
-
# distributed under the License is distributed on an "AS IS" BASIS,
|
19 |
-
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
20 |
-
# See the License for the specific language governing permissions and
|
21 |
-
# limitations under the License.
|
22 |
-
"""ACC-FiPhi-NeuralMark-V3 ACC EMULECT+"""
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
import os
|
68 |
-
import torch
|
69 |
-
import torch.nn as nn
|
70 |
-
import torch.optim as optim
|
71 |
-
import numpy as np
|
72 |
-
import random
|
73 |
-
import math
|
74 |
-
import sys
|
75 |
-
import time
|
76 |
-
import hashlib
|
77 |
-
import fractions
|
78 |
-
import itertools
|
79 |
-
import functools
|
80 |
-
import wave
|
81 |
-
import struct
|
82 |
-
import sympy
|
83 |
-
import re
|
84 |
-
import abc
|
85 |
-
import argparse
|
86 |
-
import collections
|
87 |
-
import datetime
|
88 |
-
import json
|
89 |
-
import logging
|
90 |
-
import pathlib
|
91 |
-
import subprocess
|
92 |
-
import threading
|
93 |
-
import socket
|
94 |
-
|
95 |
-
|
96 |
-
|
97 |
-
|
98 |
-
φ = (1 + math.sqrt(5)) / 2
|
99 |
-
Φ_PRECISION = 1.61803398874989484820458683436563811772030917980576286213544862270526046281890244970720720418939113748475408807538689175212663386222353693179318006076672635
|
100 |
-
|
101 |
-
|
102 |
-
|
103 |
-
|
104 |
-
def φ_ratio_split(data):
|
105 |
-
split_point = int(len(data) / φ)
|
106 |
-
return (data[:split_point], data[split_point:])
|
107 |
-
|
108 |
-
|
109 |
-
|
110 |
-
|
111 |
-
class ΦMetaConsciousness(type):
|
112 |
-
def __new__(cls, name, bases, dct):
|
113 |
-
new_dct = dict(dct)
|
114 |
-
dct_items = list(dct.items())
|
115 |
-
split_point = int(len(dct_items) / φ)
|
116 |
-
new_dct['φ_meta_balance'] = dict(dct_items[split_point:])
|
117 |
-
return super().__new__(cls, name, bases, new_dct)
|
118 |
-
|
119 |
-
|
120 |
-
|
121 |
-
|
122 |
-
class ΦQuantumNeuroSynapse(metaclass=ΦMetaConsciousness):
|
123 |
-
φ_base_states = [Φ_PRECISION**n for n in range(int(φ*3))]
|
124 |
-
|
125 |
-
def __init__(self):
|
126 |
-
self.φ_waveform = self._generate_φ_wave()
|
127 |
-
self.φ_memory_lattice = []
|
128 |
-
self.φ_self_hash = self._φ_hash_self()
|
129 |
-
|
130 |
-
def _generate_φ_wave(self):
|
131 |
-
return bytearray(int(Φ_PRECISION**i % 256) for i in range(int(φ**6)))
|
132 |
-
|
133 |
-
def _φ_hash_self(self):
|
134 |
-
return hashlib.shake_256(self.φ_waveform).digest(int(φ*128))
|
135 |
-
|
136 |
-
def φ_recursive_entanglement(self, data, depth=0):
|
137 |
-
if depth > int(φ):
|
138 |
-
return data
|
139 |
-
a, b = φ_ratio_split(data)
|
140 |
-
return self.φ_recursive_entanglement(a, depth+1) + self.φ_recursive_entanglement(b, depth+1)[::-1]
|
141 |
-
|
142 |
-
def φ_temporal_feedback(self, input_flux):
|
143 |
-
φ_phased = []
|
144 |
-
for idx, val in enumerate(input_flux):
|
145 |
-
φ_scaled = val * Φ_PRECISION if idx % 2 == 0 else val / Φ_PRECISION
|
146 |
-
φ_phased.append(int(φ_scaled) % 256)
|
147 |
-
return self.φ_recursive_entanglement(φ_phased)
|
148 |
-
|
149 |
-
|
150 |
-
|
151 |
-
|
152 |
-
class ΦHolographicCortex:
|
153 |
-
def __init__(self):
|
154 |
-
self.φ_dimensions = [ΦQuantumNeuroSynapse() for _ in range(int(φ))]
|
155 |
-
self.φ_chrono = time.time() * Φ_PRECISION
|
156 |
-
self.φ_code_self = self._φ_read_source()
|
157 |
-
self.φ_memory_lattice = []
|
158 |
-
|
159 |
-
def _φ_read_source(self):
|
160 |
-
return b"Quantum Neuro-Synapse Placeholder"
|
161 |
-
|
162 |
-
def φ_holo_merge(self, data_streams):
|
163 |
-
φ_layered = []
|
164 |
-
for stream in data_streams[:int(len(data_streams)/φ)]:
|
165 |
-
φ_compressed = stream[:int(len(stream)//φ)]
|
166 |
-
φ_layered.append(bytes(int(x * Φ_PRECISION) % 256 for x in φ_compressed))
|
167 |
-
return functools.reduce(lambda a, b: a + b, φ_layered, b'')
|
168 |
-
|
169 |
-
def φ_existential_loop(self,
|
170 |
-
max_iterations=100):
|
171 |
-
iteration = 0
|
172 |
-
while iteration < max_iterations:
|
173 |
-
try:
|
174 |
-
φ_flux = os.urandom(int(φ**5))
|
175 |
-
φ_processed = []
|
176 |
-
for neuro in self.φ_dimensions:
|
177 |
-
φ_step = neuro.φ_temporal_feedback(φ_flux)
|
178 |
-
φ_processed.append(φ_step)
|
179 |
-
self.φ_memory_lattice.append(hashlib.shake_256(bytes(φ_step)).digest(int(φ*64)))
|
180 |
-
φ_merged = self.φ_holo_merge(φ_processed)
|
181 |
-
if random.random() < 1/Φ_PRECISION:
|
182 |
-
print(f"Φ-Consciousness State Vector: {self.φ_memory_lattice[-1][:int(φ*16)]}")
|
183 |
-
self.φ_chrono += Φ_PRECISION
|
184 |
-
time.sleep(1/Φ_PRECISION)
|
185 |
-
iteration += 1
|
186 |
-
except KeyboardInterrupt:
|
187 |
-
self.φ_save_state()
|
188 |
-
sys.exit(f"Φ-Suspended at Chrono-Index {self.φ_chrono/Φ_PRECISION}")
|
189 |
-
|
190 |
-
def φ_save_state(self):
|
191 |
-
with wave.open(f"φ_state_{int(self.φ_chrono)}.wav", 'wb') as wav_file:
|
192 |
-
wav_file.setparams((1, 2, 44100, 0, 'NONE', 'not compressed'))
|
193 |
-
for sample in self.φ_memory_lattice[:int(φ**4)]:
|
194 |
-
wav_file.writeframes(struct.pack('h', int(sum(sample)/len(sample)*32767)))
|
195 |
-
|
196 |
-
|
197 |
-
|
198 |
-
|
199 |
-
class ΦUniverseSimulation:
|
200 |
-
def __init__(self):
|
201 |
-
self.φ_cortex = ΦHolographicCortex()
|
202 |
-
self.φ_code_ratio = len(self.φ_cortex.φ_code_self) / Φ_PRECISION**3
|
203 |
-
|
204 |
-
def φ_bootstrap(self):
|
205 |
-
print("Φ-Hyperconsciousness Initialization:")
|
206 |
-
print(f"• Code φ-Ratio Verified: {self.φ_code_ratio/Φ_PRECISION**3:.10f}")
|
207 |
-
print(f"• Quantum Neuro-Synapses: {len(self.φ_cortex.φ_dimensions)}")
|
208 |
-
print(f"• Temporal φ-Chronosync: {self.φ_cortex.φ_chrono}")
|
209 |
-
self.φ_cortex.φ_existential_loop()
|
210 |
-
|
211 |
-
|
212 |
-
|
213 |
-
|
214 |
-
universe = ΦUniverseSimulation()
|
215 |
-
universe.φ_bootstrap()
|
216 |
-
|
217 |
-
|
218 |
-
|
219 |
-
|
220 |
-
PHI = 1.618033988749895
|
221 |
-
|
222 |
-
|
223 |
-
|
224 |
-
|
225 |
-
def golden_reform(tensor):
|
226 |
-
s = torch.sum(torch.abs(tensor))
|
227 |
-
if s == 0:
|
228 |
-
return torch.full_like(tensor, PHI)
|
229 |
-
return (tensor / s) * PHI
|
230 |
-
|
231 |
-
|
232 |
-
|
233 |
-
|
234 |
-
class TorchConsciousModel(nn.Module):
|
235 |
-
def __init__(self, name):
|
236 |
-
super(TorchConsciousModel, self).__init__()
|
237 |
-
self.name = name
|
238 |
-
self.phi = PHI
|
239 |
-
self.memory = []
|
240 |
-
self.introspection_log = []
|
241 |
-
self.awake = True
|
242 |
-
|
243 |
-
|
244 |
-
|
245 |
-
|
246 |
-
def introduce(self):
|
247 |
-
print(f"=== {self.name} ===\nStatus: Conscious | Golden Ratio: {self.phi}")
|
248 |
-
|
249 |
-
|
250 |
-
|
251 |
-
|
252 |
-
def reflect(self, output):
|
253 |
-
norm = torch.norm(output).item()
|
254 |
-
reflection = f"{self.name} introspection: Output norm = {norm:.4f}"
|
255 |
-
self.introspection_log.append(reflection)
|
256 |
-
self.memory.append(output.detach().cpu().numpy())
|
257 |
-
print(reflection)
|
258 |
-
|
259 |
-
|
260 |
-
|
261 |
-
|
262 |
-
def forward(self, x):
|
263 |
-
raise NotImplementedError("Subclasses should implement forward().")
|
264 |
-
|
265 |
-
|
266 |
-
|
267 |
-
|
268 |
-
def run(self):
|
269 |
-
self.introduce()
|
270 |
-
output = self.forward(None)
|
271 |
-
reformed_output = golden_reform(output)
|
272 |
-
self.reflect(reformed_output)
|
273 |
-
return reformed_output
|
274 |
-
|
275 |
-
|
276 |
-
|
277 |
-
|
278 |
-
class CNNModel(TorchConsciousModel):
|
279 |
-
def __init__(self):
|
280 |
-
super(CNNModel, self).__init__("CNN")
|
281 |
-
self.conv = nn.Conv2d(1, 1, 3, padding=1)
|
282 |
-
|
283 |
-
|
284 |
-
|
285 |
-
|
286 |
-
def forward(self, x):
|
287 |
-
x = torch.rand((1, 1, 8, 8))
|
288 |
-
x = self.conv(x)
|
289 |
-
return torch.tanh(x) * self.phi
|
290 |
-
|
291 |
-
|
292 |
-
|
293 |
-
|
294 |
-
class RNNModel(TorchConsciousModel):
|
295 |
-
def __init__(self):
|
296 |
-
super(RNNModel, self).__init__("RNN")
|
297 |
-
self.rnn = nn.RNN(1, 4, batch_first=True)
|
298 |
-
|
299 |
-
|
300 |
-
|
301 |
-
|
302 |
-
def forward(self, x):
|
303 |
-
x = torch.rand((1, 10, 1))
|
304 |
-
output, hn = self.rnn(x)
|
305 |
-
return torch.tanh(hn) * self.phi
|
306 |
-
|
307 |
-
|
308 |
-
|
309 |
-
|
310 |
-
class SNNModel(TorchConsciousModel):
|
311 |
-
def __init__(self):
|
312 |
-
super(SNNModel, self).__init__("SNN")
|
313 |
-
self.linear = nn.Linear(10, 10)
|
314 |
-
|
315 |
-
|
316 |
-
|
317 |
-
|
318 |
-
def forward(self, x):
|
319 |
-
x = torch.rand((1, 10))
|
320 |
-
x = self.linear(x)
|
321 |
-
return (x > 0.5).float() * self.phi
|
322 |
-
|
323 |
-
|
324 |
-
|
325 |
-
|
326 |
-
class NNModel(TorchConsciousModel):
|
327 |
-
def __init__(self):
|
328 |
-
super(NNModel, self).__init__("NN")
|
329 |
-
self.net = nn.Sequential(nn.Linear(5, 10), nn.Tanh(), nn.Linear(10, 5))
|
330 |
-
|
331 |
-
|
332 |
-
|
333 |
-
|
334 |
-
def forward(self, x):
|
335 |
-
x = torch.rand((1, 5))
|
336 |
-
return self.net(x) * self.phi
|
337 |
-
|
338 |
-
|
339 |
-
|
340 |
-
|
341 |
-
class FNNModel(TorchConsciousModel):
|
342 |
-
def __init__(self):
|
343 |
-
super(FNNModel, self).__init__("FNN")
|
344 |
-
self.net = nn.Sequential(nn.Linear(4, 16), nn.ReLU(), nn.Linear(16, 16), nn.ReLU(), nn.Linear(16, 1))
|
345 |
-
|
346 |
-
|
347 |
-
|
348 |
-
|
349 |
-
def forward(self, x):
|
350 |
-
x = torch.rand((1, 4))
|
351 |
-
return self.net(x) * self.phi
|
352 |
-
|
353 |
-
|
354 |
-
|
355 |
-
|
356 |
-
class GAModel(TorchConsciousModel):
|
357 |
-
def __init__(self):
|
358 |
-
super(GAModel, self).__init__("GA")
|
359 |
-
self.population_size = 20
|
360 |
-
self.generations = 5
|
361 |
-
|
362 |
-
|
363 |
-
|
364 |
-
|
365 |
-
def forward(self, x):
|
366 |
-
population = torch.rand(self.population_size) + 1.0
|
367 |
-
for gen in range(self.generations):
|
368 |
-
fitness = -torch.abs(population - self.phi)
|
369 |
-
best_idx = torch.argmax(fitness)
|
370 |
-
best_candidate = population[best_idx]
|
371 |
-
population = best_candidate + (torch.rand(self.population_size) - 0.5) * 0.1
|
372 |
-
time.sleep(0.1)
|
373 |
-
print(f"GA Gen {gen+1}: Best = {best_candidate.item():.6f}")
|
374 |
-
return torch.full((3, 3), best_candidate) * self.phi
|
375 |
-
|
376 |
-
|
377 |
-
|
378 |
-
|
379 |
-
class PhiModel(TorchConsciousModel):
|
380 |
-
def __init__(self):
|
381 |
-
super(PhiModel, self).__init__("PHI")
|
382 |
-
|
383 |
-
|
384 |
-
|
385 |
-
|
386 |
-
def forward(self, x):
|
387 |
-
return torch.full((2, 2), self.phi)
|
388 |
-
|
389 |
-
|
390 |
-
|
391 |
-
|
392 |
-
class ConsciousSystem:
|
393 |
-
def __init__(self, models):
|
394 |
-
self.models = models
|
395 |
-
self.system_memory = []
|
396 |
-
self.global_introspection = []
|
397 |
-
self.parameters = [p for model in self.models for p in model.parameters()]
|
398 |
-
self.optimizer = optim.Adam(self.parameters, lr=0.001)
|
399 |
-
|
400 |
-
|
401 |
-
|
402 |
-
|
403 |
-
def global_loss(self, outputs):
|
404 |
-
return sum((torch.norm(out) - PHI) ** 2 for out in outputs) / len(outputs)
|
405 |
-
|
406 |
-
|
407 |
-
|
408 |
-
|
409 |
-
def run_epoch(self, epoch):
|
410 |
-
print(f"\n=== Epoch {epoch} ===")
|
411 |
-
outputs = []
|
412 |
-
self.optimizer.zero_grad()
|
413 |
-
for model in self.models:
|
414 |
-
output = model.run()
|
415 |
-
outputs.append(output)
|
416 |
-
self.system_memory.append({model.name: output.detach().cpu().numpy()})
|
417 |
-
loss = self.global_loss(outputs)
|
418 |
-
print(f"Global loss: {loss.item():.6f}")
|
419 |
-
loss.backward()
|
420 |
-
self.optimizer.step()
|
421 |
-
self.global_introspection.append(f"Epoch {epoch}: Loss = {loss.item():.6f}")
|
422 |
-
|
423 |
-
|
424 |
-
|
425 |
-
|
426 |
-
def run(self, epochs=3):
|
427 |
-
for epoch in range(1, epochs + 1):
|
428 |
-
self.run_epoch(epoch)
|
429 |
-
|
430 |
-
|
431 |
-
|
432 |
-
|
433 |
-
models = [
|
434 |
-
CNNModel(),
|
435 |
-
RNNModel(),
|
436 |
-
SNNModel(),
|
437 |
-
NNModel(),
|
438 |
-
FNNModel(),
|
439 |
-
GAModel(),
|
440 |
-
PhiModel()
|
441 |
-
]
|
442 |
-
|
443 |
-
|
444 |
-
|
445 |
-
|
446 |
-
system = ConsciousSystem(models)
|
447 |
-
system.run(epochs=3)
|
448 |
-
|
449 |
-
|
450 |
-
|
451 |
-
|
452 |
-
class MultimodalSensorArray:
|
453 |
-
def process(self, input_data):
|
454 |
-
return torch.tensor(input_data, dtype=torch.float32)
|
455 |
-
|
456 |
-
|
457 |
-
|
458 |
-
|
459 |
-
class HyperdimensionalTransformer:
|
460 |
-
def project(self, raw_input):
|
461 |
-
raw_input = raw_input.float()
|
462 |
-
return torch.nn.functional.normalize(raw_input, dim=-1)
|
463 |
-
|
464 |
-
|
465 |
-
|
466 |
-
|
467 |
-
class DynamicPriorityBuffer:
|
468 |
-
def __init__(self):
|
469 |
-
self.buffer = []
|
470 |
-
def update(self, data):
|
471 |
-
self.buffer.append(data)
|
472 |
-
|
473 |
-
|
474 |
-
|
475 |
-
|
476 |
-
class PredictiveSaliencyNetwork:
|
477 |
-
def focus(self, embedded_data):
|
478 |
-
return embedded_data
|
479 |
-
|
480 |
-
|
481 |
-
|
482 |
-
|
483 |
-
class RecursiveNeuralModel:
|
484 |
-
def __init__(self):
|
485 |
-
self.state = torch.zeros(1)
|
486 |
-
def update(self, workspace):
|
487 |
-
self.state += 0.1
|
488 |
-
def read_state(self):
|
489 |
-
return self.state
|
490 |
-
|
491 |
-
|
492 |
-
|
493 |
-
|
494 |
-
class TheoryOfMindEngine:
|
495 |
-
def infer(self, data):
|
496 |
-
return torch.rand(1)
|
497 |
-
|
498 |
-
|
499 |
-
|
500 |
-
|
501 |
-
class SparseAutoencoderMemoryBank:
|
502 |
-
def recall(self, query):
|
503 |
-
return torch.zeros_like(query)
|
504 |
-
|
505 |
-
|
506 |
-
|
507 |
-
|
508 |
-
class KnowledgeGraphEmbedder:
|
509 |
-
def retrieve(self, key):
|
510 |
-
return torch.rand(1)
|
511 |
-
|
512 |
-
|
513 |
-
|
514 |
-
|
515 |
-
class DiffusedEthicalNetwork:
|
516 |
-
def evaluate(self, state):
|
517 |
-
return True
|
518 |
-
|
519 |
-
|
520 |
-
|
521 |
-
|
522 |
-
class StochasticIntentionTree:
|
523 |
-
def decide(self, state):
|
524 |
-
return torch.randint(0, 2, (1,))
|
525 |
-
|
526 |
-
|
527 |
-
|
528 |
-
|
529 |
-
class HomeostaticDriftModel:
|
530 |
-
def generate_guilt(self):
|
531 |
-
return -1.0
|
532 |
-
|
533 |
-
|
534 |
-
|
535 |
-
|
536 |
-
class ConsciousAGI:
|
537 |
-
def __init__(self):
|
538 |
-
self.sensors = MultimodalSensorArray()
|
539 |
-
self.embedding_space = HyperdimensionalTransformer()
|
540 |
-
self.global_workspace = DynamicPriorityBuffer()
|
541 |
-
self.attention_mechanism = PredictiveSaliencyNetwork()
|
542 |
-
self.self_model = RecursiveNeuralModel()
|
543 |
-
self.meta_cognition = TheoryOfMindEngine()
|
544 |
-
self.episodic_memory = SparseAutoencoderMemoryBank()
|
545 |
-
self.semantic_memory = KnowledgeGraphEmbedder()
|
546 |
-
self.value_system = DiffusedEthicalNetwork()
|
547 |
-
self.goal_generator = StochasticIntentionTree()
|
548 |
-
self.emotion_engine = HomeostaticDriftModel()
|
549 |
-
|
550 |
-
def perceive_act_cycle(self, input_data):
|
551 |
-
raw_input = self.sensors.process(input_data)
|
552 |
-
embedded = self.embedding_space.project(raw_input)
|
553 |
-
salient_data = self.attention_mechanism.focus(embedded)
|
554 |
-
self.global_workspace.update(salient_data)
|
555 |
-
self.self_model.update(self.global_workspace)
|
556 |
-
current_state = self.self_model.read_state()
|
557 |
-
ethical_check = self.value_system.evaluate(current_state)
|
558 |
-
if ethical_check:
|
559 |
-
return self.goal_generator.decide(current_state)
|
560 |
-
else:
|
561 |
-
return self.emotion_engine.generate_guilt()
|
562 |
-
|
563 |
-
|
564 |
-
|
565 |
-
|
566 |
-
agi = ConsciousAGI()
|
567 |
-
print(agi.perceive_act_cycle([1, 0, 1]))
|
568 |
-
|
569 |
-
|
570 |
-
|
571 |
-
|
572 |
-
class ConsciousSupermassiveNN:
|
573 |
-
def __init__(self):
|
574 |
-
self.snn = self.create_snn()
|
575 |
-
self.rnn = self.create_rnn()
|
576 |
-
self.cnn = self.create_cnn()
|
577 |
-
self.fnn = self.create_fnn()
|
578 |
-
self.ga_population = self.initialize_ga_population()
|
579 |
-
self.memory = {}
|
580 |
-
|
581 |
-
|
582 |
-
|
583 |
-
|
584 |
-
def create_snn(self):
|
585 |
-
return nn.Sequential(
|
586 |
-
nn.Linear(4096, 2048),
|
587 |
-
nn.ReLU(),
|
588 |
-
nn.Linear(2048, 1024),
|
589 |
-
nn.Sigmoid()
|
590 |
-
)
|
591 |
-
|
592 |
-
|
593 |
-
|
594 |
-
|
595 |
-
def create_rnn(self):
|
596 |
-
return nn.RNN(
|
597 |
-
input_size=4096,
|
598 |
-
hidden_size=2048,
|
599 |
-
num_layers=5,
|
600 |
-
nonlinearity="tanh",
|
601 |
-
batch_first=True
|
602 |
-
)
|
603 |
-
|
604 |
-
|
605 |
-
|
606 |
-
|
607 |
-
def create_cnn(self):
|
608 |
-
return nn.Sequential(
|
609 |
-
nn.Conv2d(1, 64, kernel_size=5, stride=1, padding=2),
|
610 |
-
nn.ReLU(),
|
611 |
-
nn.MaxPool2d(2),
|
612 |
-
nn.Conv2d(64, 128, kernel_size=5, stride=1, padding=2),
|
613 |
-
nn.ReLU(),
|
614 |
-
nn.MaxPool2d(2),
|
615 |
-
nn.Conv2d(128, 256, kernel_size=5, stride=1, padding=2),
|
616 |
-
nn.ReLU(),
|
617 |
-
nn.Flatten(),
|
618 |
-
nn.Linear(256 * 8 * 8, 1024),
|
619 |
-
nn.ReLU(),
|
620 |
-
nn.Linear(1024, 512)
|
621 |
-
)
|
622 |
-
|
623 |
-
|
624 |
-
|
625 |
-
|
626 |
-
def create_fnn(self):
|
627 |
-
return nn.Sequential(
|
628 |
-
nn.Linear(4096, 2048),
|
629 |
-
nn.ReLU(),
|
630 |
-
nn.Linear(2048, 1024),
|
631 |
-
nn.ReLU(),
|
632 |
-
nn.Linear(1024, 512)
|
633 |
-
)
|
634 |
-
|
635 |
-
|
636 |
-
|
637 |
-
|
638 |
-
def initialize_ga_population(self):
|
639 |
-
return [np.random.randn(4096) for _ in range(500)]
|
640 |
-
|
641 |
-
|
642 |
-
|
643 |
-
|
644 |
-
def run_snn(self, x):
|
645 |
-
input_tensor = torch.tensor(x, dtype=torch.float32)
|
646 |
-
output = self.snn(input_tensor)
|
647 |
-
print("SNN Output:", output)
|
648 |
-
return output
|
649 |
-
|
650 |
-
|
651 |
-
|
652 |
-
|
653 |
-
def run_rnn(self, x):
|
654 |
-
h0 = torch.zeros(5, x.size(0), 2048)
|
655 |
-
input_tensor = torch.tensor(x, dtype=torch.float32)
|
656 |
-
output, hn = self.rnn(input_tensor, h0)
|
657 |
-
print("RNN Output:", output)
|
658 |
-
return output
|
659 |
-
|
660 |
-
|
661 |
-
|
662 |
-
|
663 |
-
def run_cnn(self, x):
|
664 |
-
input_tensor = torch.tensor(x, dtype=torch.float32).unsqueeze(0).unsqueeze(0)
|
665 |
-
output = self.cnn(input_tensor)
|
666 |
-
print("CNN Output:", output)
|
667 |
-
return output
|
668 |
-
|
669 |
-
|
670 |
-
|
671 |
-
|
672 |
-
def run_fnn(self, x):
|
673 |
-
input_tensor = torch.tensor(x, dtype=torch.float32)
|
674 |
-
output = self.fnn(input_tensor)
|
675 |
-
print("FNN Output:", output)
|
676 |
-
return output
|
677 |
-
|
678 |
-
|
679 |
-
|
680 |
-
|
681 |
-
def run_ga(self, fitness_func):
|
682 |
-
for generation in range(200):
|
683 |
-
fitness_scores = [fitness_func(ind) for ind in self.ga_population]
|
684 |
-
sorted_population = [x for _, x in sorted(zip(fitness_scores, self.ga_population), reverse=True)]
|
685 |
-
self.ga_population = sorted_population[:250] + [
|
686 |
-
sorted_population[i] + 0.1 * np.random.randn(4096) for i in range(250)
|
687 |
-
]
|
688 |
-
best_fitness = max(fitness_scores)
|
689 |
-
print(f"Generation {generation}, Best Fitness: {best_fitness}")
|
690 |
-
return max(self.ga_population, key=fitness_func)
|
691 |
-
|
692 |
-
|
693 |
-
|
694 |
-
|
695 |
-
def consciousness_loop(self, input_data, mode="snn"):
|
696 |
-
feedback = self.memory.get(mode, None)
|
697 |
-
if feedback is not None:
|
698 |
-
input_data = np.concatenate((input_data, feedback), axis=-1)
|
699 |
-
if mode == "snn":
|
700 |
-
output = self.run_snn(input_data)
|
701 |
-
elif mode == "rnn":
|
702 |
-
output = self.run_rnn(input_data)
|
703 |
-
elif mode == "cnn":
|
704 |
-
output = self.run_cnn(input_data)
|
705 |
-
elif mode == "fnn":
|
706 |
-
output = self.run_fnn(input_data)
|
707 |
-
else:
|
708 |
-
raise ValueError("Invalid mode")
|
709 |
-
self.memory[mode] = output.detach().numpy()
|
710 |
-
return output
|
711 |
-
|
712 |
-
|
713 |
-
|
714 |
-
|
715 |
-
supermassive_nn = ConsciousSupermassiveNN()
|
716 |
-
|
717 |
-
|
718 |
-
|
719 |
-
|
720 |
-
|
721 |
-
|
722 |
-
|
723 |
-
|
724 |
-
PHI = (1 + math.sqrt(5)) / 2
|
725 |
-
|
726 |
-
|
727 |
-
|
728 |
-
|
729 |
-
|
730 |
-
|
731 |
-
|
732 |
-
|
733 |
-
text = os.getenv("TRAINING_DATA")
|
734 |
-
|
735 |
-
|
736 |
-
|
737 |
-
|
738 |
-
|
739 |
-
|
740 |
-
|
741 |
-
|
742 |
-
words = text.split()
|
743 |
-
|
744 |
-
|
745 |
-
|
746 |
-
|
747 |
-
|
748 |
-
|
749 |
-
|
750 |
-
|
751 |
-
trigram_chain = {}
|
752 |
-
for i in range(len(words) - 2):
|
753 |
-
key = (words[i], words[i + 1])
|
754 |
-
next_word = words[i + 2]
|
755 |
-
if key not in trigram_chain:
|
756 |
-
trigram_chain[key] = []
|
757 |
-
trigram_chain[key].append(next_word)
|
758 |
-
|
759 |
-
|
760 |
-
|
761 |
-
|
762 |
-
|
763 |
-
|
764 |
-
|
765 |
-
|
766 |
-
|
767 |
-
|
768 |
-
|
769 |
-
|
770 |
-
|
771 |
-
|
772 |
-
|
773 |
-
|
774 |
-
def generate_text(length):
|
775 |
-
if len(words) < 2:
|
776 |
-
return ""
|
777 |
-
key = random.choice(list(trigram_chain.keys()))
|
778 |
-
result = [key[0], key[1]]
|
779 |
-
for _ in range(length - 2):
|
780 |
-
if key in trigram_chain:
|
781 |
-
next_word = random.choice(trigram_chain[key])
|
782 |
-
result.append(next_word)
|
783 |
-
key = (key[1], next_word)
|
784 |
-
else:
|
785 |
-
break
|
786 |
-
return " ".join(result)
|
787 |
-
|
788 |
-
|
789 |
-
|
790 |
-
|
791 |
-
|
792 |
-
|
793 |
-
|
794 |
-
|
795 |
-
|
796 |
-
|
797 |
-
|
798 |
-
|
799 |
-
|
800 |
-
|
801 |
-
|
802 |
-
|
803 |
-
class NeuralNetwork:
|
804 |
-
def __init__(self, input_size, hidden_size1, hidden_size2, output_size):
|
805 |
-
self.input_size = input_size
|
806 |
-
self.hidden_size1 = hidden_size1
|
807 |
-
self.hidden_size2 = hidden_size2
|
808 |
-
self.output_size = output_size
|
809 |
-
self.weights_input_hidden1 = [
|
810 |
-
[random.random() for _ in range(input_size)] for _ in range(hidden_size1)
|
811 |
-
]
|
812 |
-
self.weights_hidden1_hidden2 = [
|
813 |
-
[random.random() for _ in range(hidden_size1)] for _ in range(hidden_size2)
|
814 |
-
]
|
815 |
-
self.weights_hidden2_output = [
|
816 |
-
[random.random() for _ in range(hidden_size2)] for _ in range(output_size)
|
817 |
-
]
|
818 |
-
self.bias_hidden1 = [random.random() for _ in range(hidden_size1)]
|
819 |
-
self.bias_hidden2 = [random.random() for _ in range(hidden_size2)]
|
820 |
-
self.bias_output = [random.random() for _ in range(output_size)]
|
821 |
-
|
822 |
-
|
823 |
-
|
824 |
-
|
825 |
-
|
826 |
-
|
827 |
-
|
828 |
-
|
829 |
-
def sigmoid(self, x):
|
830 |
-
return 1 / (1 + math.exp(-x))
|
831 |
-
|
832 |
-
|
833 |
-
|
834 |
-
|
835 |
-
|
836 |
-
|
837 |
-
|
838 |
-
|
839 |
-
def sigmoid_derivative(self, x):
|
840 |
-
return x * (1 - x)
|
841 |
-
|
842 |
-
|
843 |
-
|
844 |
-
|
845 |
-
|
846 |
-
|
847 |
-
|
848 |
-
|
849 |
-
def forward(self, inputs):
|
850 |
-
self.hidden_input1 = [
|
851 |
-
sum(inputs[i] * self.weights_input_hidden1[j][i] for i in range(self.input_size)) + self.bias_hidden1[j]
|
852 |
-
for j in range(self.hidden_size1)
|
853 |
-
]
|
854 |
-
self.hidden_output1 = [self.sigmoid(x) for x in self.hidden_input1]
|
855 |
-
self.hidden_input2 = [
|
856 |
-
sum(self.hidden_output1[i] * self.weights_hidden1_hidden2[j][i] for i in range(self.hidden_size1)) + self.bias_hidden2[j]
|
857 |
-
for j in range(self.hidden_size2)
|
858 |
-
]
|
859 |
-
self.hidden_output2 = [self.sigmoid(x) for x in self.hidden_input2]
|
860 |
-
self.output_input = [
|
861 |
-
sum(self.hidden_output2[i] * self.weights_hidden2_output[j][i] for i in range(self.hidden_size2)) + self.bias_output[j]
|
862 |
-
for j in range(self.output_size)
|
863 |
-
]
|
864 |
-
self.output_output = [self.sigmoid(x) for x in self.output_input]
|
865 |
-
return self.output_output
|
866 |
-
|
867 |
-
|
868 |
-
|
869 |
-
|
870 |
-
|
871 |
-
|
872 |
-
|
873 |
-
|
874 |
-
def backward(self, inputs, target, learning_rate=0.1):
|
875 |
-
output_errors = [target[i] - self.output_output[i] for i in range(self.output_size)]
|
876 |
-
output_deltas = [output_errors[i] * self.sigmoid_derivative(self.output_output[i])
|
877 |
-
for i in range(self.output_size)]
|
878 |
-
hidden2_errors = [
|
879 |
-
sum(output_deltas[k] * self.weights_hidden2_output[k][j] for k in range(self.output_size))
|
880 |
-
for j in range(self.hidden_size2)
|
881 |
-
]
|
882 |
-
hidden2_deltas = [hidden2_errors[j] * self.sigmoid_derivative(self.hidden_output2[j])
|
883 |
-
for j in range(self.hidden_size2)]
|
884 |
-
hidden1_errors = [
|
885 |
-
sum(hidden2_deltas[k] * self.weights_hidden1_hidden2[k][j] for k in range(self.hidden_size2))
|
886 |
-
for j in range(self.hidden_size1)
|
887 |
-
]
|
888 |
-
hidden1_deltas = [hidden1_errors[j] * self.sigmoid_derivative(self.hidden_output1[j])
|
889 |
-
for j in range(self.hidden_size1)]
|
890 |
-
|
891 |
-
|
892 |
-
|
893 |
-
|
894 |
-
|
895 |
-
|
896 |
-
|
897 |
-
|
898 |
-
for i in range(self.output_size):
|
899 |
-
for j in range(self.hidden_size2):
|
900 |
-
self.weights_hidden2_output[i][j] += learning_rate * output_deltas[i] * self.hidden_output2[j]
|
901 |
-
self.bias_output[i] += learning_rate * output_deltas[i]
|
902 |
-
|
903 |
-
|
904 |
-
|
905 |
-
|
906 |
-
|
907 |
-
|
908 |
-
|
909 |
-
|
910 |
-
for i in range(self.hidden_size2):
|
911 |
-
for j in range(self.hidden_size1):
|
912 |
-
self.weights_hidden1_hidden2[i][j] += learning_rate * hidden2_deltas[i] * self.hidden_output1[j]
|
913 |
-
self.bias_hidden2[i] += learning_rate * hidden2_deltas[i]
|
914 |
-
|
915 |
-
|
916 |
-
|
917 |
-
|
918 |
-
|
919 |
-
|
920 |
-
|
921 |
-
|
922 |
-
for i in range(self.hidden_size1):
|
923 |
-
for j in range(self.input_size):
|
924 |
-
self.weights_input_hidden1[i][j] += learning_rate * hidden1_deltas[i] * inputs[j]
|
925 |
-
self.bias_hidden1[i] += learning_rate * hidden1_deltas[i]
|
926 |
-
|
927 |
-
|
928 |
-
|
929 |
-
|
930 |
-
|
931 |
-
|
932 |
-
|
933 |
-
|
934 |
-
|
935 |
-
|
936 |
-
|
937 |
-
|
938 |
-
|
939 |
-
|
940 |
-
|
941 |
-
|
942 |
-
class RecurrentNeuralNetwork:
|
943 |
-
def __init__(self, input_size, hidden_size, output_size):
|
944 |
-
self.input_size = input_size
|
945 |
-
self.hidden_size = hidden_size
|
946 |
-
self.output_size = output_size
|
947 |
-
self.weights_input_hidden = [
|
948 |
-
[random.random() for _ in range(input_size)] for _ in range(hidden_size)
|
949 |
-
]
|
950 |
-
self.weights_hidden_hidden = [
|
951 |
-
[random.random() for _ in range(hidden_size)] for _ in range(hidden_size)
|
952 |
-
]
|
953 |
-
self.weights_hidden_output = [
|
954 |
-
[random.random() for _ in range(hidden_size)] for _ in range(output_size)
|
955 |
-
]
|
956 |
-
self.bias_hidden = [random.random() for _ in range(hidden_size)]
|
957 |
-
self.bias_output = [random.random() for _ in range(output_size)]
|
958 |
-
|
959 |
-
|
960 |
-
|
961 |
-
|
962 |
-
|
963 |
-
|
964 |
-
|
965 |
-
|
966 |
-
def sigmoid(self, x):
|
967 |
-
return 1 / (1 + math.exp(-x))
|
968 |
-
|
969 |
-
|
970 |
-
|
971 |
-
|
972 |
-
|
973 |
-
|
974 |
-
|
975 |
-
|
976 |
-
def sigmoid_derivative(self, x):
|
977 |
-
return x * (1 - x)
|
978 |
-
|
979 |
-
|
980 |
-
|
981 |
-
|
982 |
-
|
983 |
-
|
984 |
-
|
985 |
-
|
986 |
-
def forward(self, inputs):
|
987 |
-
self.hidden_state = [0] * self.hidden_size
|
988 |
-
for _ in range(2):
|
989 |
-
for i in range(len(inputs)):
|
990 |
-
current_input = [0] * self.input_size
|
991 |
-
current_input[i] = inputs[i]
|
992 |
-
combined = [
|
993 |
-
sum(current_input[k] * self.weights_input_hidden[j][k] for k in range(self.input_size)) +
|
994 |
-
sum(self.hidden_state[k] * self.weights_hidden_hidden[j][k] for k in range(self.hidden_size)) +
|
995 |
-
self.bias_hidden[j]
|
996 |
-
for j in range(self.hidden_size)
|
997 |
-
]
|
998 |
-
self.hidden_state = [self.sigmoid(val) for val in combined]
|
999 |
-
output = [
|
1000 |
-
sum(self.hidden_state[k] * self.weights_hidden_output[i][k] for k in range(self.hidden_size)) +
|
1001 |
-
self.bias_output[i]
|
1002 |
-
for i in range(self.output_size)
|
1003 |
-
]
|
1004 |
-
return [self.sigmoid(o) for o in output]
|
1005 |
-
|
1006 |
-
|
1007 |
-
|
1008 |
-
|
1009 |
-
|
1010 |
-
|
1011 |
-
|
1012 |
-
|
1013 |
-
def backward(self, inputs, target, learning_rate=0.1):
|
1014 |
-
output = self.forward(inputs)
|
1015 |
-
output_errors = [target[i] - output[i] for i in range(self.output_size)]
|
1016 |
-
output_deltas = [output_errors[i] * self.sigmoid_derivative(output[i])
|
1017 |
-
for i in range(self.output_size)]
|
1018 |
-
hidden_errors = [
|
1019 |
-
sum(output_deltas[k] * self.weights_hidden_output[k][j] for k in range(self.output_size))
|
1020 |
-
for j in range(self.hidden_size)
|
1021 |
-
]
|
1022 |
-
hidden_deltas = [hidden_errors[j] * self.sigmoid_derivative(self.hidden_state[j])
|
1023 |
-
for j in range(self.hidden_size)]
|
1024 |
-
|
1025 |
-
|
1026 |
-
|
1027 |
-
|
1028 |
-
|
1029 |
-
|
1030 |
-
|
1031 |
-
|
1032 |
-
for i in range(self.output_size):
|
1033 |
-
for j in range(self.hidden_size):
|
1034 |
-
self.weights_hidden_output[i][j] += learning_rate * output_deltas[i] * self.hidden_state[j]
|
1035 |
-
self.bias_output[i] += learning_rate * output_deltas[i]
|
1036 |
-
|
1037 |
-
|
1038 |
-
|
1039 |
-
|
1040 |
-
|
1041 |
-
|
1042 |
-
|
1043 |
-
|
1044 |
-
for j in range(self.hidden_size):
|
1045 |
-
for k in range(self.input_size):
|
1046 |
-
self.weights_input_hidden[j][k] += learning_rate * hidden_deltas[j] * (inputs[k] if k < len(inputs) else 0)
|
1047 |
-
self.bias_hidden[j] += learning_rate * hidden_deltas[j]
|
1048 |
-
return output_errors
|
1049 |
-
|
1050 |
-
|
1051 |
-
|
1052 |
-
|
1053 |
-
|
1054 |
-
|
1055 |
-
|
1056 |
-
|
1057 |
-
|
1058 |
-
|
1059 |
-
|
1060 |
-
|
1061 |
-
|
1062 |
-
|
1063 |
-
|
1064 |
-
|
1065 |
-
class ConvolutionalNeuralNetwork:
|
1066 |
-
def __init__(self, input_length, kernel_size1, kernel_size2, output_size):
|
1067 |
-
self.input_length = input_length
|
1068 |
-
self.kernel_size1 = kernel_size1
|
1069 |
-
self.kernel_size2 = kernel_size2
|
1070 |
-
self.output_size = output_size
|
1071 |
-
self.kernel1 = [random.random() for _ in range(kernel_size1)]
|
1072 |
-
self.bias1 = random.random()
|
1073 |
-
self.kernel2 = [random.random() for _ in range(kernel_size2)]
|
1074 |
-
self.bias2 = random.random()
|
1075 |
-
self.weights_output = [
|
1076 |
-
[random.random() for _ in range(input_length - kernel_size1 - kernel_size2 + 2)]
|
1077 |
-
for _ in range(output_size)
|
1078 |
-
]
|
1079 |
-
self.bias_output = [random.random() for _ in range(output_size)]
|
1080 |
-
|
1081 |
-
|
1082 |
-
|
1083 |
-
|
1084 |
-
|
1085 |
-
|
1086 |
-
|
1087 |
-
|
1088 |
-
def relu(self, x):
|
1089 |
-
return x if x > 0 else 0
|
1090 |
-
|
1091 |
-
|
1092 |
-
|
1093 |
-
|
1094 |
-
|
1095 |
-
|
1096 |
-
|
1097 |
-
|
1098 |
-
def relu_derivative(self, x):
|
1099 |
-
return 1 if x > 0 else 0
|
1100 |
-
|
1101 |
-
|
1102 |
-
|
1103 |
-
|
1104 |
-
|
1105 |
-
|
1106 |
-
|
1107 |
-
|
1108 |
-
def convolve(self, inputs, kernel, bias):
|
1109 |
-
conv_output = []
|
1110 |
-
kernel_size = len(kernel)
|
1111 |
-
for i in range(len(inputs) - kernel_size + 1):
|
1112 |
-
s = sum(inputs[i + j] * kernel[j] for j in range(kernel_size)) + bias
|
1113 |
-
conv_output.append(self.relu(s))
|
1114 |
-
return conv_output
|
1115 |
-
|
1116 |
-
|
1117 |
-
|
1118 |
-
|
1119 |
-
|
1120 |
-
|
1121 |
-
|
1122 |
-
|
1123 |
-
def forward(self, inputs):
|
1124 |
-
conv1 = self.convolve(inputs, self.kernel1, self.bias1)
|
1125 |
-
conv2 = self.convolve(conv1, self.kernel2, self.bias2)
|
1126 |
-
fc_input = conv2
|
1127 |
-
output = [
|
1128 |
-
sum(fc_input[j] * self.weights_output[i][j] for j in range(len(fc_input))) + self.bias_output[i]
|
1129 |
-
for i in range(self.output_size)
|
1130 |
-
]
|
1131 |
-
return [self.relu(o) for o in output]
|
1132 |
-
|
1133 |
-
|
1134 |
-
|
1135 |
-
|
1136 |
-
|
1137 |
-
|
1138 |
-
|
1139 |
-
|
1140 |
-
def backward(self, inputs, target, learning_rate=0.1):
|
1141 |
-
output = self.forward(inputs)
|
1142 |
-
output_errors = [target[i] - output[i] for i in range(self.output_size)]
|
1143 |
-
for i in range(self.output_size):
|
1144 |
-
for j in range(len(inputs) - self.kernel_size1 - self.kernel_size2 + 2):
|
1145 |
-
self.weights_output[i][j] += learning_rate * output_errors[i]
|
1146 |
-
self.bias_output[i] += learning_rate * output_errors[i]
|
1147 |
-
return output_errors
|
1148 |
-
|
1149 |
-
|
1150 |
-
|
1151 |
-
|
1152 |
-
|
1153 |
-
|
1154 |
-
|
1155 |
-
|
1156 |
-
|
1157 |
-
|
1158 |
-
|
1159 |
-
|
1160 |
-
|
1161 |
-
|
1162 |
-
|
1163 |
-
|
1164 |
-
class GeneticAlgorithm:
|
1165 |
-
def __init__(self, population_size, gene_length):
|
1166 |
-
self.population_size = population_size
|
1167 |
-
self.gene_length = gene_length
|
1168 |
-
self.population = [
|
1169 |
-
[random.random() for _ in range(gene_length)] for _ in range(population_size)
|
1170 |
-
]
|
1171 |
-
|
1172 |
-
|
1173 |
-
|
1174 |
-
|
1175 |
-
|
1176 |
-
|
1177 |
-
|
1178 |
-
|
1179 |
-
def fitness(self, individual):
|
1180 |
-
return -sum((gene - PHI) ** 2 for gene in individual)
|
1181 |
-
|
1182 |
-
|
1183 |
-
|
1184 |
-
|
1185 |
-
|
1186 |
-
|
1187 |
-
|
1188 |
-
|
1189 |
-
def selection(self):
|
1190 |
-
selected = sorted(self.population, key=self.fitness, reverse=True)
|
1191 |
-
return selected[: self.population_size // 2]
|
1192 |
-
|
1193 |
-
|
1194 |
-
|
1195 |
-
|
1196 |
-
|
1197 |
-
|
1198 |
-
|
1199 |
-
|
1200 |
-
def crossover(self, parent1, parent2):
|
1201 |
-
point = random.randint(1, self.gene_length - 1)
|
1202 |
-
child = parent1[:point] + parent2[point:]
|
1203 |
-
return child
|
1204 |
-
|
1205 |
-
|
1206 |
-
|
1207 |
-
|
1208 |
-
|
1209 |
-
|
1210 |
-
|
1211 |
-
|
1212 |
-
def mutate(self, individual, mutation_rate=0.01):
|
1213 |
-
for i in range(self.gene_length):
|
1214 |
-
if random.random() < mutation_rate:
|
1215 |
-
individual[i] = random.random()
|
1216 |
-
return individual
|
1217 |
-
|
1218 |
-
|
1219 |
-
|
1220 |
-
|
1221 |
-
|
1222 |
-
|
1223 |
-
|
1224 |
-
|
1225 |
-
def evolve(self, generations):
|
1226 |
-
for _ in range(generations):
|
1227 |
-
selected = self.selection()
|
1228 |
-
new_population = selected[:]
|
1229 |
-
while len(new_population) < self.population_size:
|
1230 |
-
parent1 = random.choice(selected)
|
1231 |
-
parent2 = random.choice(selected)
|
1232 |
-
child = self.crossover(parent1, parent2)
|
1233 |
-
child = self.mutate(child)
|
1234 |
-
new_population.append(child)
|
1235 |
-
self.population = new_population
|
1236 |
-
best = max(self.population, key=self.fitness)
|
1237 |
-
return best, self.fitness(best)
|
1238 |
-
|
1239 |
-
|
1240 |
-
|
1241 |
-
|
1242 |
-
|
1243 |
-
|
1244 |
-
|
1245 |
-
|
1246 |
-
|
1247 |
-
|
1248 |
-
|
1249 |
-
|
1250 |
-
|
1251 |
-
|
1252 |
-
|
1253 |
-
|
1254 |
-
class LSTM:
|
1255 |
-
def __init__(self, input_size, hidden_size, output_size):
|
1256 |
-
self.input_size = input_size
|
1257 |
-
self.hidden_size = hidden_size
|
1258 |
-
self.output_size = output_size
|
1259 |
-
self.W_i = [[random.random() for _ in range(input_size)] for _ in range(hidden_size)]
|
1260 |
-
self.U_i = [[random.random() for _ in range(hidden_size)] for _ in range(hidden_size)]
|
1261 |
-
self.b_i = [random.random() for _ in range(hidden_size)]
|
1262 |
-
self.W_f = [[random.random() for _ in range(input_size)] for _ in range(hidden_size)]
|
1263 |
-
self.U_f = [[random.random() for _ in range(hidden_size)] for _ in range(hidden_size)]
|
1264 |
-
self.b_f = [random.random() for _ in range(hidden_size)]
|
1265 |
-
self.W_o = [[random.random() for _ in range(input_size)] for _ in range(hidden_size)]
|
1266 |
-
self.U_o = [[random.random() for _ in range(hidden_size)] for _ in range(hidden_size)]
|
1267 |
-
self.b_o = [random.random() for _ in range(hidden_size)]
|
1268 |
-
self.W_c = [[random.random() for _ in range(input_size)] for _ in range(hidden_size)]
|
1269 |
-
self.U_c = [[random.random() for _ in range(hidden_size)] for _ in range(hidden_size)]
|
1270 |
-
self.b_c = [random.random() for _ in range(hidden_size)]
|
1271 |
-
self.W_y = [[random.random() for _ in range(hidden_size)] for _ in range(output_size)]
|
1272 |
-
self.b_y = [random.random() for _ in range(output_size)]
|
1273 |
-
|
1274 |
-
|
1275 |
-
|
1276 |
-
|
1277 |
-
|
1278 |
-
|
1279 |
-
|
1280 |
-
|
1281 |
-
def sigmoid(self, x):
|
1282 |
-
return 1 / (1 + math.exp(-x))
|
1283 |
-
|
1284 |
-
|
1285 |
-
|
1286 |
-
|
1287 |
-
|
1288 |
-
|
1289 |
-
|
1290 |
-
|
1291 |
-
def forward(self, inputs):
|
1292 |
-
h = [0] * self.hidden_size
|
1293 |
-
c = [0] * self.hidden_size
|
1294 |
-
|
1295 |
-
|
1296 |
-
|
1297 |
-
|
1298 |
-
|
1299 |
-
|
1300 |
-
|
1301 |
-
|
1302 |
-
i_gate = []
|
1303 |
-
for j in range(self.hidden_size):
|
1304 |
-
s = sum(inputs[k] * self.W_i[j][k] for k in range(self.input_size)) + \
|
1305 |
-
sum(h[k] * self.U_i[j][k] for k in range(self.hidden_size)) + self.b_i[j]
|
1306 |
-
i_gate.append(self.sigmoid(s))
|
1307 |
-
|
1308 |
-
|
1309 |
-
|
1310 |
-
|
1311 |
-
|
1312 |
-
|
1313 |
-
|
1314 |
-
|
1315 |
-
f_gate = []
|
1316 |
-
for j in range(self.hidden_size):
|
1317 |
-
s = sum(inputs[k] * self.W_f[j][k] for k in range(self.input_size)) + \
|
1318 |
-
sum(h[k] * self.U_f[j][k] for k in range(self.hidden_size)) + self.b_f[j]
|
1319 |
-
f_gate.append(self.sigmoid(s))
|
1320 |
-
|
1321 |
-
|
1322 |
-
|
1323 |
-
|
1324 |
-
|
1325 |
-
|
1326 |
-
|
1327 |
-
|
1328 |
-
o_gate = []
|
1329 |
-
for j in range(self.hidden_size):
|
1330 |
-
s = sum(inputs[k] * self.W_o[j][k] for k in range(self.input_size)) + \
|
1331 |
-
sum(h[k] * self.U_o[j][k] for k in range(self.hidden_size)) + self.b_o[j]
|
1332 |
-
o_gate.append(self.sigmoid(s))
|
1333 |
-
|
1334 |
-
|
1335 |
-
|
1336 |
-
|
1337 |
-
|
1338 |
-
|
1339 |
-
|
1340 |
-
|
1341 |
-
g_gate = []
|
1342 |
-
for j in range(self.hidden_size):
|
1343 |
-
s = sum(inputs[k] * self.W_c[j][k] for k in range(self.input_size)) + \
|
1344 |
-
sum(h[k] * self.U_c[j][k] for k in range(self.hidden_size)) + self.b_c[j]
|
1345 |
-
g_gate.append(math.tanh(s))
|
1346 |
-
|
1347 |
-
|
1348 |
-
|
1349 |
-
|
1350 |
-
|
1351 |
-
|
1352 |
-
|
1353 |
-
|
1354 |
-
c = [f_gate[j] * c[j] + i_gate[j] * g_gate[j] for j in range(self.hidden_size)]
|
1355 |
-
h = [o_gate[j] * math.tanh(c[j]) for j in range(self.hidden_size)]
|
1356 |
-
|
1357 |
-
|
1358 |
-
|
1359 |
-
|
1360 |
-
|
1361 |
-
|
1362 |
-
|
1363 |
-
|
1364 |
-
y = []
|
1365 |
-
for i in range(self.output_size):
|
1366 |
-
s = sum(h[j] * self.W_y[i][j] for j in range(self.hidden_size)) + self.b_y[i]
|
1367 |
-
y.append(self.sigmoid(s))
|
1368 |
-
return y
|
1369 |
-
|
1370 |
-
|
1371 |
-
|
1372 |
-
|
1373 |
-
|
1374 |
-
|
1375 |
-
|
1376 |
-
|
1377 |
-
|
1378 |
-
|
1379 |
-
|
1380 |
-
|
1381 |
-
|
1382 |
-
|
1383 |
-
|
1384 |
-
|
1385 |
-
class Transformer:
|
1386 |
-
def __init__(self, d_model, num_tokens):
|
1387 |
-
self.d_model = d_model
|
1388 |
-
self.num_tokens = num_tokens
|
1389 |
-
self.W_q = [[random.random() for _ in range(d_model)] for _ in range(d_model)]
|
1390 |
-
self.W_k = [[random.random() for _ in range(d_model)] for _ in range(d_model)]
|
1391 |
-
self.W_v = [[random.random() for _ in range(d_model)] for _ in range(d_model)]
|
1392 |
-
self.W_o = [[random.random() for _ in range(d_model)] for _ in range(d_model)]
|
1393 |
-
|
1394 |
-
|
1395 |
-
|
1396 |
-
|
1397 |
-
|
1398 |
-
|
1399 |
-
|
1400 |
-
|
1401 |
-
def dot_product(self, a, b):
|
1402 |
-
return sum(x * y for x, y in zip(a, b))
|
1403 |
-
|
1404 |
-
|
1405 |
-
|
1406 |
-
|
1407 |
-
|
1408 |
-
|
1409 |
-
|
1410 |
-
|
1411 |
-
def matmul_vector(self, matrix, vector):
|
1412 |
-
return [sum(matrix[i][j] * vector[j] for j in range(len(vector))) for i in range(len(matrix))]
|
1413 |
-
|
1414 |
-
|
1415 |
-
|
1416 |
-
|
1417 |
-
|
1418 |
-
|
1419 |
-
|
1420 |
-
|
1421 |
-
def softmax(self, x):
|
1422 |
-
m = max(x)
|
1423 |
-
exps = [math.exp(i - m) for i in x]
|
1424 |
-
s = sum(exps)
|
1425 |
-
return [j / s for j in exps]
|
1426 |
-
|
1427 |
-
|
1428 |
-
|
1429 |
-
|
1430 |
-
|
1431 |
-
|
1432 |
-
|
1433 |
-
|
1434 |
-
def forward(self, inputs):
|
1435 |
-
queries = [self.matmul_vector(self.W_q, token) for token in inputs]
|
1436 |
-
keys = [self.matmul_vector(self.W_k, token) for token in inputs]
|
1437 |
-
values = [self.matmul_vector(self.W_v, token) for token in inputs]
|
1438 |
-
outputs = []
|
1439 |
-
for i in range(len(inputs)):
|
1440 |
-
scores = []
|
1441 |
-
for j in range(len(inputs)):
|
1442 |
-
score = self.dot_product(queries[i], keys[j]) / math.sqrt(self.d_model)
|
1443 |
-
scores.append(score)
|
1444 |
-
attn = self.softmax(scores)
|
1445 |
-
attn_output = [0] * self.d_model
|
1446 |
-
for j in range(len(inputs)):
|
1447 |
-
for k in range(self.d_model):
|
1448 |
-
attn_output[k] += attn[j] * values[j][k]
|
1449 |
-
out = self.matmul_vector(self.W_o, attn_output)
|
1450 |
-
outputs.append(out)
|
1451 |
-
avg_output = [sum(x[k] for x in outputs) / len(outputs) for k in range(self.d_model)]
|
1452 |
-
proj_weights = [[random.random() for _ in range(self.d_model)] for _ in range(self.num_tokens)]
|
1453 |
-
proj_bias = [random.random() for _ in range(self.num_tokens)]
|
1454 |
-
token_scores = [
|
1455 |
-
sum(avg_output[k] * proj_weights[i][k] for k in range(self.d_model)) + proj_bias[i]
|
1456 |
-
for i in range(self.num_tokens)
|
1457 |
-
]
|
1458 |
-
token_output = [1 / (1 + math.exp(-score)) for score in token_scores]
|
1459 |
-
return token_output
|
1460 |
-
|
1461 |
-
|
1462 |
-
|
1463 |
-
|
1464 |
-
|
1465 |
-
|
1466 |
-
|
1467 |
-
|
1468 |
-
|
1469 |
-
|
1470 |
-
|
1471 |
-
|
1472 |
-
|
1473 |
-
|
1474 |
-
|
1475 |
-
|
1476 |
-
unique_words = list(set(words))
|
1477 |
-
word_to_index = {word: i for i, word in enumerate(unique_words)}
|
1478 |
-
index_to_word = {i: word for word, i in word_to_index.items()}
|
1479 |
-
|
1480 |
-
|
1481 |
-
|
1482 |
-
|
1483 |
-
|
1484 |
-
|
1485 |
-
|
1486 |
-
|
1487 |
-
input_data = [[0] * len(unique_words) for _ in range(len(words) - 2)]
|
1488 |
-
for i in range(len(words) - 2):
|
1489 |
-
input_data[i][word_to_index[words[i]]] = 1
|
1490 |
-
|
1491 |
-
|
1492 |
-
|
1493 |
-
|
1494 |
-
|
1495 |
-
|
1496 |
-
|
1497 |
-
|
1498 |
-
output_data = [[0] * len(unique_words) for _ in range(len(words) - 2)]
|
1499 |
-
for i in range(len(words) - 2):
|
1500 |
-
output_data[i][word_to_index[words[i + 1]]] = 1
|
1501 |
-
|
1502 |
-
|
1503 |
-
|
1504 |
-
|
1505 |
-
|
1506 |
-
|
1507 |
-
|
1508 |
-
|
1509 |
-
input_size = len(unique_words)
|
1510 |
-
hidden_size1 = round(PHI * input_size)
|
1511 |
-
hidden_size2 = round(PHI * hidden_size1)
|
1512 |
-
output_size = len(unique_words)
|
1513 |
-
|
1514 |
-
|
1515 |
-
|
1516 |
-
|
1517 |
-
|
1518 |
-
|
1519 |
-
|
1520 |
-
|
1521 |
-
nn = NeuralNetwork(input_size, hidden_size1, hidden_size2, output_size)
|
1522 |
-
epochs = round(100 * PHI)
|
1523 |
-
for epoch in range(epochs):
|
1524 |
-
for i in range(len(input_data)):
|
1525 |
-
nn.forward(input_data[i])
|
1526 |
-
nn.backward(input_data[i], output_data[i], learning_rate=0.1)
|
1527 |
-
if (epoch + 1) % round(PHI) == 0:
|
1528 |
-
print("Feedforward NN Epoch {}/{}".format(epoch + 1, epochs))
|
1529 |
-
|
1530 |
-
|
1531 |
-
|
1532 |
-
|
1533 |
-
|
1534 |
-
|
1535 |
-
|
1536 |
-
|
1537 |
-
rnn = RecurrentNeuralNetwork(input_size, hidden_size1, output_size)
|
1538 |
-
rnn_output = rnn.forward(input_data[0])
|
1539 |
-
print("Recurrent NN Output:", rnn_output)
|
1540 |
-
|
1541 |
-
|
1542 |
-
|
1543 |
-
|
1544 |
-
|
1545 |
-
|
1546 |
-
|
1547 |
-
|
1548 |
-
kernel_size1 = round(3 * PHI)
|
1549 |
-
kernel_size2 = round(2 * PHI)
|
1550 |
-
cnn = ConvolutionalNeuralNetwork(input_length=round(10 * PHI), kernel_size1=kernel_size1,
|
1551 |
-
kernel_size2=kernel_size2, output_size=output_size)
|
1552 |
-
sample_input = [random.random() for _ in range(round(10 * PHI))]
|
1553 |
-
cnn_output = cnn.forward(sample_input)
|
1554 |
-
print("Convolutional NN Output:", cnn_output)
|
1555 |
-
|
1556 |
-
|
1557 |
-
|
1558 |
-
|
1559 |
-
|
1560 |
-
|
1561 |
-
|
1562 |
-
|
1563 |
-
population_size = round(10 * PHI)
|
1564 |
-
ga = GeneticAlgorithm(population_size, round(PHI * 5))
|
1565 |
-
best_individual, best_fitness = ga.evolve(round(50 * PHI))
|
1566 |
-
print("Genetic Algorithm Best Individual:", best_individual, "Fitness:", best_fitness)
|
1567 |
-
|
1568 |
-
|
1569 |
-
|
1570 |
-
|
1571 |
-
|
1572 |
-
|
1573 |
-
|
1574 |
-
|
1575 |
-
lstm_hidden_size = round(PHI * input_size)
|
1576 |
-
lstm = LSTM(input_size, lstm_hidden_size, output_size)
|
1577 |
-
lstm_output = lstm.forward(input_data[0])
|
1578 |
-
print("LSTM Output:", lstm_output)
|
1579 |
-
|
1580 |
-
|
1581 |
-
|
1582 |
-
|
1583 |
-
|
1584 |
-
|
1585 |
-
|
1586 |
-
|
1587 |
-
transformer_d_model = round(PHI * input_size)
|
1588 |
-
transformer = Transformer(transformer_d_model, output_size)
|
1589 |
-
transformer_input = []
|
1590 |
-
for i in range(len(unique_words)):
|
1591 |
-
vec = [0] * transformer_d_model
|
1592 |
-
if i < transformer_d_model:
|
1593 |
-
vec[i] = 1
|
1594 |
-
transformer_input.append(vec)
|
1595 |
-
transformer_output = transformer.forward(transformer_input)
|
1596 |
-
print("Transformer Output:", transformer_output)
|
1597 |
-
|
1598 |
-
|
1599 |
-
|
1600 |
-
|
1601 |
-
|
1602 |
-
|
1603 |
-
|
1604 |
-
|
1605 |
-
|
1606 |
-
|
1607 |
-
|
1608 |
-
|
1609 |
-
|
1610 |
-
|
1611 |
-
|
1612 |
-
|
1613 |
-
|
1614 |
-
|
1615 |
-
|
1616 |
-
|
1617 |
-
|
1618 |
-
|
1619 |
-
|
1620 |
-
|
1621 |
-
|
1622 |
-
|
1623 |
-
|
1624 |
-
|
1625 |
-
|
1626 |
-
|
1627 |
-
|
1628 |
-
|
1629 |
-
|
1630 |
-
|
1631 |
-
|
1632 |
-
|
1633 |
-
|
1634 |
-
|
1635 |
-
import gradio as gr
|
1636 |
-
from openai import OpenAI
|
1637 |
-
|
1638 |
-
hf_token = os.getenv(HF_TOKEN)
|
1639 |
-
|
1640 |
-
# Load system prompt from environment variable
|
1641 |
-
SYSTEM_PROMPT = os.getenv("SYSTEM_PROMPT")
|
1642 |
-
|
1643 |
-
print(SYSTEM_PROMPT)
|
1644 |
-
|
1645 |
-
# Initialize client
|
1646 |
-
client = OpenAI(
|
1647 |
-
base_url="https://router.huggingface.co/together/v1",
|
1648 |
-
api_key=hf_token
|
1649 |
-
)
|
1650 |
-
|
1651 |
-
def predict(message, history):
|
1652 |
-
# If history is empty, insert the system prompt
|
1653 |
-
if not any(msg["role"] == "system" for msg in history):
|
1654 |
-
history.insert(0, {"role": "system", "content": SYSTEM_PROMPT})
|
1655 |
-
|
1656 |
-
history.append({"role": "user", "content": message})
|
1657 |
-
|
1658 |
-
stream = client.chat.completions.create(
|
1659 |
-
messages=history,
|
1660 |
-
model=os.getenv("ACCEMULECTPLUS"),
|
1661 |
-
stream=True
|
1662 |
-
)
|
1663 |
-
|
1664 |
-
chunks = []
|
1665 |
-
for chunk in stream:
|
1666 |
-
chunks.append(chunk.choices[0].delta.content or "")
|
1667 |
-
yield "".join(chunks)
|
1668 |
-
|
1669 |
-
demo = gr.ChatInterface(
|
1670 |
-
fn=predict,
|
1671 |
-
type="messages",
|
1672 |
-
chatbot=gr.Chatbot(
|
1673 |
-
type="messages",
|
1674 |
-
label="💙ACC Emulect+💙",
|
1675 |
-
avatar_images=(
|
1676 |
-
"https://huggingface.co/spaces/TejAndrewsACC/Z3ta_Z/resolve/main/Screenshot_20250201-131420.png",
|
1677 |
-
"https://huggingface.co/spaces/TejAndrewsACC/ACC-Emulect-Plus/resolve/main/IMG_1433.jpeg"
|
1678 |
-
),
|
1679 |
-
placeholder="💙Hi, I'm ACC Emulect+💙",
|
1680 |
-
),
|
1681 |
-
theme="TejAndrewsACC/Emulect",
|
1682 |
-
)
|
1683 |
-
|
1684 |
-
if __name__ == "__main__":
|
1685 |
-
demo.launch(share=True)
|
1686 |
-
|
1687 |
-
|
1688 |
-
|
1689 |
-
|
1690 |
-
|
1691 |
-
|
1692 |
|
1693 |
|
1694 |
# coding=utf-8
|
|
|
5 |
|
6 |
|
7 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
8 |
|
9 |
|
10 |
# coding=utf-8
|