Spaces:
Runtime error
Runtime error
| from transformers import AutoModelForCausalLM, AutoTokenizer | |
| # Load model and tokenizer | |
| model_name = "meta-llama/Llama-3.1-8B-Instruct" | |
| model = AutoModelForCausalLM.from_pretrained( | |
| model_name, | |
| torch_dtype="auto", | |
| device_map="auto" | |
| ) | |
| tokenizer = AutoTokenizer.from_pretrained(model_name) | |
| # Initialize persistent conversation with a system message | |
| system_message = {"role": "system", "content": "You are a helpful and harmless assistant. You are Qwen developed by Alibaba. You should think step-by-step."} | |
| messages = [system_message] | |
| # Chat loop to maintain persistence | |
| while True: | |
| user_input = input("User: ") # Get user input | |
| if user_input.lower() in {"exit", "quit"}: | |
| print("Chat session ended.") | |
| break | |
| # Append user message to the conversation history | |
| messages.append({"role": "user", "content": user_input}) | |
| # Format the messages for the model | |
| text = tokenizer.apply_chat_template( | |
| messages, | |
| tokenize=False, | |
| add_generation_prompt=True | |
| ) | |
| model_inputs = tokenizer([text], return_tensors="pt").to(model.device) | |
| # Generate response | |
| generated_ids = model.generate( | |
| **model_inputs, | |
| max_new_tokens=512 | |
| ) | |
| generated_ids = [ | |
| output_ids[len(input_ids):] for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids) | |
| ] | |
| response = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0] | |
| # Append assistant's response to the conversation history | |
| messages.append({"role": "assistant", "content": response}) | |
| # Display the assistant's response | |
| print(f"Assistant: {response}") | |