Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
|
@@ -5,120 +5,165 @@ from PIL import Image
|
|
| 5 |
import json
|
| 6 |
from huggingface_hub import hf_hub_download
|
| 7 |
|
| 8 |
-
#
|
| 9 |
MODEL_REPO = "AngelBottomless/camie-tagger-onnxruntime"
|
| 10 |
MODEL_FILE = "camie_tagger_initial.onnx"
|
| 11 |
META_FILE = "metadata.json"
|
|
|
|
|
|
|
|
|
|
|
|
|
| 12 |
model_path = hf_hub_download(repo_id=MODEL_REPO, filename=MODEL_FILE, cache_dir=".")
|
| 13 |
meta_path = hf_hub_download(repo_id=MODEL_REPO, filename=META_FILE, cache_dir=".")
|
|
|
|
|
|
|
| 14 |
session = ort.InferenceSession(model_path, providers=["CPUExecutionProvider"])
|
| 15 |
-
|
| 16 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 17 |
def preprocess_image(pil_image: Image.Image) -> np.ndarray:
|
| 18 |
-
|
|
|
|
| 19 |
arr = np.array(img).astype(np.float32) / 255.0
|
| 20 |
arr = np.transpose(arr, (2, 0, 1))
|
| 21 |
-
|
| 22 |
-
return arr
|
| 23 |
|
| 24 |
-
|
| 25 |
-
|
| 26 |
-
|
|
|
|
|
|
|
|
|
|
| 27 |
input_tensor = preprocess_image(pil_image)
|
| 28 |
input_name = session.get_inputs()[0].name
|
| 29 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 30 |
probs = 1 / (1 + np.exp(-refined_logits))
|
| 31 |
-
probs = probs[0]
|
| 32 |
idx_to_tag = metadata["idx_to_tag"]
|
| 33 |
tag_to_category = metadata.get("tag_to_category", {})
|
| 34 |
category_thresholds = metadata.get("category_thresholds", {})
|
| 35 |
-
|
| 36 |
-
results_by_cat = {}
|
| 37 |
-
|
| 38 |
-
|
| 39 |
-
|
| 40 |
-
all_artist_tags_probs = [] # Store all artist tags and their probabilities
|
| 41 |
-
|
| 42 |
-
# Collect tags above thresholds
|
| 43 |
for idx, prob in enumerate(probs):
|
| 44 |
tag = idx_to_tag[str(idx)]
|
| 45 |
cat = tag_to_category.get(tag, "unknown")
|
| 46 |
-
if cat == 'artist':
|
| 47 |
-
all_artist_tags_probs.append((tag, float(prob))) # Store all artist tags
|
| 48 |
thresh = category_thresholds.get(cat, default_threshold)
|
|
|
|
|
|
|
| 49 |
if float(prob) >= thresh:
|
| 50 |
-
# add to category dictionary
|
| 51 |
results_by_cat.setdefault(cat, []).append((tag, float(prob)))
|
| 52 |
-
if cat
|
| 53 |
-
|
| 54 |
-
|
| 55 |
-
|
| 56 |
-
|
| 57 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 58 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 59 |
if output_format == "Prompt-style Tags":
|
| 60 |
-
|
| 61 |
-
|
| 62 |
-
|
| 63 |
-
|
| 64 |
-
artist_prompt_tags = [tag.replace("_", " ").replace("(", r"\\(").replace(")", r"\\)") for tag, prob in artist_tags_with_probs]
|
| 65 |
-
character_prompt_tags = [tag.replace("_", " ").replace("(", r"\\(").replace(")", r"\\)") for tag, prob in character_tags_with_probs]
|
| 66 |
-
general_prompt_tags = [tag.replace("_", " ").replace("(", r"\\(").replace(")", r"\\)") for tag, prob in general_tags_with_probs]
|
| 67 |
-
|
| 68 |
-
prompt_tags = artist_prompt_tags + character_prompt_tags + general_prompt_tags
|
| 69 |
-
|
| 70 |
-
# Ensure at least one artist tag if any artist tags were predicted at all, even below threshold
|
| 71 |
-
if not artist_prompt_tags and all_artist_tags_probs:
|
| 72 |
-
best_artist_tag, best_artist_prob = max(all_artist_tags_probs, key=lambda item: item[1])
|
| 73 |
-
prompt_tags = [best_artist_tag.replace("_", " ").replace("(", r"\\(").replace(")", r"\\)")] + prompt_tags
|
| 74 |
-
|
| 75 |
-
|
| 76 |
-
if not prompt_tags:
|
| 77 |
-
return "No tags predicted."
|
| 78 |
-
return ", ".join(prompt_tags)
|
| 79 |
-
else: # Detailed output
|
| 80 |
-
if not results_by_cat:
|
| 81 |
-
return "No tags predicted for this image."
|
| 82 |
-
|
| 83 |
-
# Ensure artist tag in detailed output even if below threshold
|
| 84 |
-
if 'artist' not in results_by_cat and all_artist_tags_probs:
|
| 85 |
-
best_artist_tag, best_artist_prob = max(all_artist_tags_probs, key=lambda item: item[1])
|
| 86 |
-
results_by_cat['artist'] = [(best_artist_tag, best_artist_prob)]
|
| 87 |
-
|
| 88 |
-
|
| 89 |
-
lines = []
|
| 90 |
-
lines.append("**Predicted Tags by Category:** \n") # (Markdown newline: two spaces + newline)
|
| 91 |
-
for cat, tag_list in results_by_cat.items():
|
| 92 |
-
# sort tags in this category by probability descending
|
| 93 |
-
tag_list.sort(key=lambda x: x[1], reverse=True)
|
| 94 |
-
lines.append(f"**Category: {cat}** – {len(tag_list)} tags")
|
| 95 |
-
for tag, prob in tag_list:
|
| 96 |
-
tag_pretty = tag.replace("_", " ").replace("(", r"\\(").replace(")", r"\\)") # Escape parentheses here with raw string
|
| 97 |
-
lines.append(f"- {tag_pretty} (Prob: {prob:.3f})")
|
| 98 |
-
lines.append("") # blank line between categories
|
| 99 |
-
return "\n".join(lines)
|
| 100 |
|
| 101 |
# Build the Gradio Blocks UI
|
| 102 |
-
demo = gr.Blocks(theme="gradio/soft")
|
| 103 |
|
| 104 |
with demo:
|
| 105 |
-
|
| 106 |
-
|
| 107 |
-
|
| 108 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 109 |
with gr.Row():
|
| 110 |
-
# Left column: Image input and format selection
|
| 111 |
with gr.Column():
|
| 112 |
image_in = gr.Image(type="pil", label="Input Image")
|
| 113 |
-
format_choice = gr.Radio(
|
|
|
|
|
|
|
|
|
|
|
|
|
| 114 |
tag_button = gr.Button("🔍 Tag Image")
|
| 115 |
-
# Right column: Output display
|
| 116 |
with gr.Column():
|
| 117 |
-
output_box = gr.Markdown("") #
|
| 118 |
-
|
| 119 |
tag_button.click(fn=tag_image, inputs=[image_in, format_choice], outputs=output_box)
|
| 120 |
-
|
| 121 |
-
gr.Markdown(
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 122 |
|
| 123 |
-
|
| 124 |
-
demo.launch()
|
|
|
|
| 5 |
import json
|
| 6 |
from huggingface_hub import hf_hub_download
|
| 7 |
|
| 8 |
+
# Constants
|
| 9 |
MODEL_REPO = "AngelBottomless/camie-tagger-onnxruntime"
|
| 10 |
MODEL_FILE = "camie_tagger_initial.onnx"
|
| 11 |
META_FILE = "metadata.json"
|
| 12 |
+
IMAGE_SIZE = (512, 512)
|
| 13 |
+
DEFAULT_THRESHOLD = 0.35
|
| 14 |
+
|
| 15 |
+
# Download model and metadata from Hugging Face Hub
|
| 16 |
model_path = hf_hub_download(repo_id=MODEL_REPO, filename=MODEL_FILE, cache_dir=".")
|
| 17 |
meta_path = hf_hub_download(repo_id=MODEL_REPO, filename=META_FILE, cache_dir=".")
|
| 18 |
+
|
| 19 |
+
# Initialize ONNX Runtime session and load metadata
|
| 20 |
session = ort.InferenceSession(model_path, providers=["CPUExecutionProvider"])
|
| 21 |
+
with open(meta_path, "r", encoding="utf-8") as f:
|
| 22 |
+
metadata = json.load(f)
|
| 23 |
+
|
| 24 |
+
def escape_tag(tag: str) -> str:
|
| 25 |
+
"""Escape underscores and parentheses for Markdown."""
|
| 26 |
+
return tag.replace("_", " ").replace("(", r"\\(").replace(")", r"\\)")
|
| 27 |
+
|
| 28 |
def preprocess_image(pil_image: Image.Image) -> np.ndarray:
|
| 29 |
+
"""Convert image to RGB, resize, normalize, and rearrange dimensions."""
|
| 30 |
+
img = pil_image.convert("RGB").resize(IMAGE_SIZE)
|
| 31 |
arr = np.array(img).astype(np.float32) / 255.0
|
| 32 |
arr = np.transpose(arr, (2, 0, 1))
|
| 33 |
+
return np.expand_dims(arr, 0)
|
|
|
|
| 34 |
|
| 35 |
+
def run_inference(pil_image: Image.Image) -> np.ndarray:
|
| 36 |
+
"""
|
| 37 |
+
Preprocess the image and run the ONNX model inference.
|
| 38 |
+
|
| 39 |
+
Returns the refined logits as a numpy array.
|
| 40 |
+
"""
|
| 41 |
input_tensor = preprocess_image(pil_image)
|
| 42 |
input_name = session.get_inputs()[0].name
|
| 43 |
+
# Only refined_logits are used (initial_logits is ignored)
|
| 44 |
+
_, refined_logits = session.run(None, {input_name: input_tensor})
|
| 45 |
+
return refined_logits[0]
|
| 46 |
+
|
| 47 |
+
def get_tags(refined_logits: np.ndarray, metadata: dict, default_threshold: float = DEFAULT_THRESHOLD):
|
| 48 |
+
"""
|
| 49 |
+
Compute probabilities from logits and collect tag predictions.
|
| 50 |
+
|
| 51 |
+
Returns:
|
| 52 |
+
results_by_cat: Dictionary mapping each category to a list of (tag, probability) above its threshold.
|
| 53 |
+
prompt_tags_by_cat: Similar dictionary but only for prompt-style categories (artist, character, general).
|
| 54 |
+
all_artist_tags: All artist tags (with probabilities) regardless of threshold.
|
| 55 |
+
"""
|
| 56 |
probs = 1 / (1 + np.exp(-refined_logits))
|
|
|
|
| 57 |
idx_to_tag = metadata["idx_to_tag"]
|
| 58 |
tag_to_category = metadata.get("tag_to_category", {})
|
| 59 |
category_thresholds = metadata.get("category_thresholds", {})
|
| 60 |
+
|
| 61 |
+
results_by_cat = {}
|
| 62 |
+
prompt_tags_by_cat = {"artist": [], "character": [], "general": []}
|
| 63 |
+
all_artist_tags = []
|
| 64 |
+
|
|
|
|
|
|
|
|
|
|
| 65 |
for idx, prob in enumerate(probs):
|
| 66 |
tag = idx_to_tag[str(idx)]
|
| 67 |
cat = tag_to_category.get(tag, "unknown")
|
|
|
|
|
|
|
| 68 |
thresh = category_thresholds.get(cat, default_threshold)
|
| 69 |
+
if cat == "artist":
|
| 70 |
+
all_artist_tags.append((tag, float(prob)))
|
| 71 |
if float(prob) >= thresh:
|
|
|
|
| 72 |
results_by_cat.setdefault(cat, []).append((tag, float(prob)))
|
| 73 |
+
if cat in prompt_tags_by_cat:
|
| 74 |
+
prompt_tags_by_cat[cat].append((tag, float(prob)))
|
| 75 |
+
return results_by_cat, prompt_tags_by_cat, all_artist_tags
|
| 76 |
+
|
| 77 |
+
def format_prompt_tags(prompt_tags_by_cat: dict, all_artist_tags: list) -> str:
|
| 78 |
+
"""
|
| 79 |
+
Format the tags for prompt-style output.
|
| 80 |
+
|
| 81 |
+
Returns a comma-separated string of escaped tags.
|
| 82 |
+
"""
|
| 83 |
+
# Sort tags within each category by probability (descending)
|
| 84 |
+
for cat in prompt_tags_by_cat:
|
| 85 |
+
prompt_tags_by_cat[cat].sort(key=lambda x: x[1], reverse=True)
|
| 86 |
+
|
| 87 |
+
artist_tags = [escape_tag(tag) for tag, _ in prompt_tags_by_cat.get("artist", [])]
|
| 88 |
+
character_tags = [escape_tag(tag) for tag, _ in prompt_tags_by_cat.get("character", [])]
|
| 89 |
+
general_tags = [escape_tag(tag) for tag, _ in prompt_tags_by_cat.get("general", [])]
|
| 90 |
+
prompt_tags = artist_tags + character_tags + general_tags
|
| 91 |
+
|
| 92 |
+
# Ensure at least one artist tag appears if available, even if below threshold
|
| 93 |
+
if not artist_tags and all_artist_tags:
|
| 94 |
+
best_artist_tag, _ = max(all_artist_tags, key=lambda item: item[1])
|
| 95 |
+
prompt_tags.insert(0, escape_tag(best_artist_tag))
|
| 96 |
+
return ", ".join(prompt_tags) if prompt_tags else "No tags predicted."
|
| 97 |
+
|
| 98 |
+
def format_detailed_output(results_by_cat: dict, all_artist_tags: list) -> str:
|
| 99 |
+
"""
|
| 100 |
+
Format the tags for detailed output.
|
| 101 |
+
|
| 102 |
+
Returns a Markdown-formatted string listing tags by category.
|
| 103 |
+
"""
|
| 104 |
+
if not results_by_cat:
|
| 105 |
+
return "No tags predicted for this image."
|
| 106 |
|
| 107 |
+
# Include an artist tag even if below threshold
|
| 108 |
+
if "artist" not in results_by_cat and all_artist_tags:
|
| 109 |
+
best_artist_tag, best_artist_prob = max(all_artist_tags, key=lambda item: item[1])
|
| 110 |
+
results_by_cat["artist"] = [(best_artist_tag, best_artist_prob)]
|
| 111 |
+
|
| 112 |
+
lines = ["**Predicted Tags by Category:** \n"]
|
| 113 |
+
for cat, tag_list in results_by_cat.items():
|
| 114 |
+
tag_list.sort(key=lambda x: x[1], reverse=True)
|
| 115 |
+
lines.append(f"**Category: {cat}** – {len(tag_list)} tags")
|
| 116 |
+
for tag, prob in tag_list:
|
| 117 |
+
lines.append(f"- {escape_tag(tag)} (Prob: {prob:.3f})")
|
| 118 |
+
lines.append("") # blank line between categories
|
| 119 |
+
return "\n".join(lines)
|
| 120 |
+
|
| 121 |
+
def tag_image(pil_image: Image.Image, output_format: str) -> str:
|
| 122 |
+
"""Run inference on the image and return formatted tags based on the chosen output format."""
|
| 123 |
+
if pil_image is None:
|
| 124 |
+
return "Please upload an image."
|
| 125 |
+
|
| 126 |
+
refined_logits = run_inference(pil_image)
|
| 127 |
+
results_by_cat, prompt_tags_by_cat, all_artist_tags = get_tags(refined_logits, metadata)
|
| 128 |
+
|
| 129 |
if output_format == "Prompt-style Tags":
|
| 130 |
+
return format_prompt_tags(prompt_tags_by_cat, all_artist_tags)
|
| 131 |
+
else:
|
| 132 |
+
return format_detailed_output(results_by_cat, all_artist_tags)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 133 |
|
| 134 |
# Build the Gradio Blocks UI
|
| 135 |
+
demo = gr.Blocks(theme="gradio/soft")
|
| 136 |
|
| 137 |
with demo:
|
| 138 |
+
gr.Markdown(
|
| 139 |
+
"# 🏷️ Camie Tagger – Anime Image Tagging\n"
|
| 140 |
+
"This demo uses an ONNX model of Camie Tagger to label anime illustrations with tags. "
|
| 141 |
+
"Upload an image and click **Tag Image** to see predictions."
|
| 142 |
+
)
|
| 143 |
+
gr.Markdown(
|
| 144 |
+
"*(Note: The model will predict a large number of tags across categories like character, general, artist, etc. "
|
| 145 |
+
"You can choose a concise prompt-style output or a detailed category-wise breakdown.)*"
|
| 146 |
+
)
|
| 147 |
with gr.Row():
|
|
|
|
| 148 |
with gr.Column():
|
| 149 |
image_in = gr.Image(type="pil", label="Input Image")
|
| 150 |
+
format_choice = gr.Radio(
|
| 151 |
+
choices=["Prompt-style Tags", "Detailed Output"],
|
| 152 |
+
value="Prompt-style Tags",
|
| 153 |
+
label="Output Format"
|
| 154 |
+
)
|
| 155 |
tag_button = gr.Button("🔍 Tag Image")
|
|
|
|
| 156 |
with gr.Column():
|
| 157 |
+
output_box = gr.Markdown("") # Markdown output for formatted results
|
| 158 |
+
|
| 159 |
tag_button.click(fn=tag_image, inputs=[image_in, format_choice], outputs=output_box)
|
| 160 |
+
|
| 161 |
+
gr.Markdown(
|
| 162 |
+
"----\n"
|
| 163 |
+
"**Model:** [Camie Tagger ONNX](https://huggingface.co/AngelBottomless/camie-tagger-onnxruntime) • "
|
| 164 |
+
"**Base Model:** Camais03/camie-tagger (61% F1 on 70k tags) • **ONNX Runtime:** for efficient CPU inference • "
|
| 165 |
+
"*Demo built with Gradio Blocks.*"
|
| 166 |
+
)
|
| 167 |
|
| 168 |
+
if __name__ == "__main__":
|
| 169 |
+
demo.launch()
|