Spaces:
Build error
Build error
Add application file
Browse files- .gitattributes +1 -0
- README.md +38 -13
- app.py +334 -0
- examples/brushnet/src/test_image.jpg +0 -0
- examples/brushnet/src/test_mask.jpg +0 -0
- requirements.txt +19 -0
.gitattributes
CHANGED
|
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
| 33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
| 34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
| 35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
|
|
| 33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
| 34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
| 35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
| 36 |
+
file filter=lfs diff=lfs merge=lfs -text
|
README.md
CHANGED
|
@@ -1,13 +1,38 @@
|
|
| 1 |
-
|
| 2 |
-
|
| 3 |
-
|
| 4 |
-
|
| 5 |
-
|
| 6 |
-
|
| 7 |
-
|
| 8 |
-
|
| 9 |
-
|
| 10 |
-
|
| 11 |
-
|
| 12 |
-
|
| 13 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# BrushNet
|
| 2 |
+
|
| 3 |
+
This repository contains the gradio demo of the paper "BrushNet: A Plug-and-Play Image Inpainting Model with Decomposed Dual-Branch Diffusion"
|
| 4 |
+
|
| 5 |
+
Keywords: Image Inpainting, Diffusion Models, Image Generation
|
| 6 |
+
|
| 7 |
+
> [Xuan Ju](https://github.com/juxuan27)<sup>12</sup>, [Xian Liu](https://alvinliu0.github.io/)<sup>12</sup>, [Xintao Wang](https://xinntao.github.io/)<sup>1*</sup>, [Yuxuan Bian](https://scholar.google.com.hk/citations?user=HzemVzoAAAAJ&hl=zh-CN&oi=ao)<sup>2</sup>, [Ying Shan](https://www.linkedin.com/in/YingShanProfile/)<sup>1</sup>, [Qiang Xu](https://cure-lab.github.io/)<sup>2*</sup><br>
|
| 8 |
+
> <sup>1</sup>ARC Lab, Tencent PCG <sup>2</sup>The Chinese University of Hong Kong <sup>*</sup>Corresponding Author
|
| 9 |
+
|
| 10 |
+
|
| 11 |
+
<p align="center">
|
| 12 |
+
<a href="https://tencentarc.github.io/BrushNet/">Project Page</a> |
|
| 13 |
+
<a href="https://github.com/TencentARC/BrushNet">Code</a> |
|
| 14 |
+
<a href="https://arxiv.org/abs/2403.06976">Arxiv</a> |
|
| 15 |
+
<a href="https://forms.gle/9TgMZ8tm49UYsZ9s5">Data</a> |
|
| 16 |
+
<a href="https://drive.google.com/file/d/1IkEBWcd2Fui2WHcckap4QFPcCI0gkHBh/view">Video</a> |
|
| 17 |
+
</p>
|
| 18 |
+
|
| 19 |
+
|
| 20 |
+
## 🤝🏼 Cite Us
|
| 21 |
+
|
| 22 |
+
```
|
| 23 |
+
@misc{ju2024brushnet,
|
| 24 |
+
title={BrushNet: A Plug-and-Play Image Inpainting Model with Decomposed Dual-Branch Diffusion},
|
| 25 |
+
author={Xuan Ju and Xian Liu and Xintao Wang and Yuxuan Bian and Ying Shan and Qiang Xu},
|
| 26 |
+
year={2024},
|
| 27 |
+
eprint={2403.06976},
|
| 28 |
+
archivePrefix={arXiv},
|
| 29 |
+
primaryClass={cs.CV}
|
| 30 |
+
}
|
| 31 |
+
```
|
| 32 |
+
|
| 33 |
+
|
| 34 |
+
## 💖 Acknowledgement
|
| 35 |
+
<span id="acknowledgement"></span>
|
| 36 |
+
|
| 37 |
+
Our code is modified based on [diffusers](https://github.com/huggingface/diffusers), thanks to all the contributors!
|
| 38 |
+
|
app.py
ADDED
|
@@ -0,0 +1,334 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
##!/usr/bin/python3
|
| 2 |
+
# -*- coding: utf-8 -*-
|
| 3 |
+
import gradio as gr
|
| 4 |
+
import os
|
| 5 |
+
import cv2
|
| 6 |
+
from PIL import Image
|
| 7 |
+
import numpy as np
|
| 8 |
+
from segment_anything import SamPredictor, sam_model_registry
|
| 9 |
+
import torch
|
| 10 |
+
from diffusers import StableDiffusionBrushNetPipeline, BrushNetModel, UniPCMultistepScheduler
|
| 11 |
+
import random
|
| 12 |
+
|
| 13 |
+
mobile_sam = sam_model_registry['vit_h'](checkpoint='data/ckpt/sam_vit_h_4b8939.pth').to("cuda")
|
| 14 |
+
mobile_sam.eval()
|
| 15 |
+
mobile_predictor = SamPredictor(mobile_sam)
|
| 16 |
+
colors = [(255, 0, 0), (0, 255, 0)]
|
| 17 |
+
markers = [1, 5]
|
| 18 |
+
|
| 19 |
+
# - - - - - examples - - - - - #
|
| 20 |
+
image_examples = [
|
| 21 |
+
["examples/brushnet/src/test_image.jpg", "A beautiful cake on the table", "examples/brushnet/src/test_mask.jpg", 0, []],
|
| 22 |
+
]
|
| 23 |
+
|
| 24 |
+
|
| 25 |
+
# choose the base model here
|
| 26 |
+
base_model_path = "data/ckpt/realisticVisionV60B1_v51VAE"
|
| 27 |
+
# base_model_path = "runwayml/stable-diffusion-v1-5"
|
| 28 |
+
|
| 29 |
+
# input brushnet ckpt path
|
| 30 |
+
brushnet_path = "data/ckpt/segmentation_mask_brushnet_ckpt"
|
| 31 |
+
|
| 32 |
+
# input source image / mask image path and the text prompt
|
| 33 |
+
image_path="examples/brushnet/src/test_image.jpg"
|
| 34 |
+
mask_path="examples/brushnet/src/test_mask.jpg"
|
| 35 |
+
caption="A cake on the table."
|
| 36 |
+
|
| 37 |
+
# conditioning scale
|
| 38 |
+
paintingnet_conditioning_scale=1.0
|
| 39 |
+
|
| 40 |
+
brushnet = BrushNetModel.from_pretrained(brushnet_path, torch_dtype=torch.float16)
|
| 41 |
+
pipe = StableDiffusionBrushNetPipeline.from_pretrained(
|
| 42 |
+
base_model_path, brushnet=brushnet, torch_dtype=torch.float16, low_cpu_mem_usage=False
|
| 43 |
+
)
|
| 44 |
+
|
| 45 |
+
# speed up diffusion process with faster scheduler and memory optimization
|
| 46 |
+
pipe.scheduler = UniPCMultistepScheduler.from_config(pipe.scheduler.config)
|
| 47 |
+
# remove following line if xformers is not installed or when using Torch 2.0.
|
| 48 |
+
# pipe.enable_xformers_memory_efficient_attention()
|
| 49 |
+
# memory optimization.
|
| 50 |
+
pipe.enable_model_cpu_offload()
|
| 51 |
+
|
| 52 |
+
def resize_image(input_image, resolution):
|
| 53 |
+
H, W, C = input_image.shape
|
| 54 |
+
H = float(H)
|
| 55 |
+
W = float(W)
|
| 56 |
+
k = float(resolution) / min(H, W)
|
| 57 |
+
H *= k
|
| 58 |
+
W *= k
|
| 59 |
+
H = int(np.round(H / 64.0)) * 64
|
| 60 |
+
W = int(np.round(W / 64.0)) * 64
|
| 61 |
+
img = cv2.resize(input_image, (W, H), interpolation=cv2.INTER_LANCZOS4 if k > 1 else cv2.INTER_AREA)
|
| 62 |
+
return img
|
| 63 |
+
|
| 64 |
+
|
| 65 |
+
def process(input_image,
|
| 66 |
+
original_image,
|
| 67 |
+
original_mask,
|
| 68 |
+
input_mask,
|
| 69 |
+
selected_points,
|
| 70 |
+
prompt,
|
| 71 |
+
negative_prompt,
|
| 72 |
+
blended,
|
| 73 |
+
invert_mask,
|
| 74 |
+
control_strength,
|
| 75 |
+
seed,
|
| 76 |
+
randomize_seed,
|
| 77 |
+
guidance_scale,
|
| 78 |
+
num_inference_steps):
|
| 79 |
+
if original_image is None:
|
| 80 |
+
raise gr.Error('Please upload the input image')
|
| 81 |
+
if (original_mask is None or len(selected_points)==0) and input_mask is None:
|
| 82 |
+
raise gr.Error("Please click the region where you hope unchanged/changed, or upload a white-black Mask image")
|
| 83 |
+
|
| 84 |
+
# load example image
|
| 85 |
+
if isinstance(original_image, int):
|
| 86 |
+
image_name = image_examples[original_image][0]
|
| 87 |
+
original_image = cv2.imread(image_name)
|
| 88 |
+
original_image = cv2.cvtColor(original_image, cv2.COLOR_BGR2RGB)
|
| 89 |
+
|
| 90 |
+
if input_mask is not None:
|
| 91 |
+
H,W=original_image.shape[:2]
|
| 92 |
+
original_mask = cv2.resize(input_mask, (W, H))
|
| 93 |
+
else:
|
| 94 |
+
original_mask = np.clip(255 - original_mask, 0, 255).astype(np.uint8)
|
| 95 |
+
|
| 96 |
+
if invert_mask:
|
| 97 |
+
original_mask=255-original_mask
|
| 98 |
+
|
| 99 |
+
mask = 1.*(original_mask.sum(-1)>255)[:,:,np.newaxis]
|
| 100 |
+
masked_image = original_image * (1-mask)
|
| 101 |
+
|
| 102 |
+
init_image = Image.fromarray(masked_image.astype(np.uint8)).convert("RGB")
|
| 103 |
+
mask_image = Image.fromarray(original_mask.astype(np.uint8)).convert("RGB")
|
| 104 |
+
|
| 105 |
+
generator = torch.Generator("cuda").manual_seed(random.randint(0,2147483647) if randomize_seed else seed)
|
| 106 |
+
|
| 107 |
+
image = pipe(
|
| 108 |
+
[prompt]*2,
|
| 109 |
+
init_image,
|
| 110 |
+
mask_image,
|
| 111 |
+
num_inference_steps=num_inference_steps,
|
| 112 |
+
guidance_scale=guidance_scale,
|
| 113 |
+
generator=generator,
|
| 114 |
+
brushnet_conditioning_scale=float(control_strength),
|
| 115 |
+
negative_prompt=[negative_prompt]*2,
|
| 116 |
+
).images
|
| 117 |
+
|
| 118 |
+
if blended:
|
| 119 |
+
if control_strength<1.0:
|
| 120 |
+
raise gr.Error('Using blurred blending with control strength less than 1.0 is not allowed')
|
| 121 |
+
blended_image=[]
|
| 122 |
+
# blur, you can adjust the parameters for better performance
|
| 123 |
+
mask = cv2.GaussianBlur(mask*255, (21, 21), 0)/255
|
| 124 |
+
mask = mask[:,:,np.newaxis]
|
| 125 |
+
for image_i in image:
|
| 126 |
+
image_np=np.array(image_i)
|
| 127 |
+
image_pasted=original_image * (1-mask) + image_np*mask
|
| 128 |
+
|
| 129 |
+
image_pasted=image_pasted.astype(image_np.dtype)
|
| 130 |
+
blended_image.append(Image.fromarray(image_pasted))
|
| 131 |
+
|
| 132 |
+
image=blended_image
|
| 133 |
+
|
| 134 |
+
return image
|
| 135 |
+
|
| 136 |
+
block = gr.Blocks(
|
| 137 |
+
theme=gr.themes.Soft(
|
| 138 |
+
radius_size=gr.themes.sizes.radius_none,
|
| 139 |
+
text_size=gr.themes.sizes.text_md
|
| 140 |
+
)
|
| 141 |
+
).queue()
|
| 142 |
+
with block:
|
| 143 |
+
with gr.Row():
|
| 144 |
+
with gr.Column():
|
| 145 |
+
|
| 146 |
+
gr.HTML(f"""
|
| 147 |
+
<div style="text-align: center;">
|
| 148 |
+
<h1>BrushNet: A Plug-and-Play Image Inpainting Model with Decomposed Dual-Branch Diffusion</h1>
|
| 149 |
+
<div style="display: flex; justify-content: center; align-items: center; text-align: center;">
|
| 150 |
+
<a href=""></a>
|
| 151 |
+
<a href='https://tencentarc.github.io/BrushNet/'><img src='https://img.shields.io/badge/Project_Page-BrushNet-green' alt='Project Page'></a>
|
| 152 |
+
<a href='https://arxiv.org/abs/2403.06976'><img src='https://img.shields.io/badge/Paper-Arxiv-blue'></a>
|
| 153 |
+
</div>
|
| 154 |
+
</br>
|
| 155 |
+
</div>
|
| 156 |
+
""")
|
| 157 |
+
|
| 158 |
+
|
| 159 |
+
with gr.Accordion(label="🧭 Instructions:", open=True, elem_id="accordion"):
|
| 160 |
+
with gr.Row(equal_height=True):
|
| 161 |
+
gr.Markdown("""
|
| 162 |
+
- ⭐️ <b>step1: </b>Upload or select one image from Example
|
| 163 |
+
- ⭐️ <b>step2: </b>Click on Input-image to select the object to be retained (or upload a white-black Mask image, in which white color indicates the region you want to keep unchanged). You can tick the 'Invert Mask' box to switch region unchanged and change.
|
| 164 |
+
- ⭐️ <b>step3: </b>Input prompt for generating new contents
|
| 165 |
+
- ⭐️ <b>step4: </b>Click Run button
|
| 166 |
+
""")
|
| 167 |
+
with gr.Row():
|
| 168 |
+
with gr.Column():
|
| 169 |
+
with gr.Column(elem_id="Input"):
|
| 170 |
+
with gr.Row():
|
| 171 |
+
with gr.Tabs(elem_classes=["feedback"]):
|
| 172 |
+
with gr.TabItem("Input Image"):
|
| 173 |
+
input_image = gr.Image(type="numpy", label="input",scale=2, height=640)
|
| 174 |
+
original_image = gr.State(value=None,label="index")
|
| 175 |
+
original_mask = gr.State(value=None)
|
| 176 |
+
selected_points = gr.State([],label="select points")
|
| 177 |
+
with gr.Row(elem_id="Seg"):
|
| 178 |
+
radio = gr.Radio(['foreground', 'background'], label='Click to seg: ', value='foreground',scale=2)
|
| 179 |
+
undo_button = gr.Button('Undo seg', elem_id="btnSEG",scale=1)
|
| 180 |
+
prompt = gr.Textbox(label="Prompt", placeholder="Please input your prompt",value='',lines=1)
|
| 181 |
+
negative_prompt = gr.Text(
|
| 182 |
+
label="Negative Prompt",
|
| 183 |
+
max_lines=5,
|
| 184 |
+
placeholder="Please input your negative prompt",
|
| 185 |
+
value='ugly, low quality',lines=1
|
| 186 |
+
)
|
| 187 |
+
with gr.Group():
|
| 188 |
+
with gr.Row():
|
| 189 |
+
blending = gr.Checkbox(label="Blurred Blending", value=False)
|
| 190 |
+
invert_mask = gr.Checkbox(label="Invert Mask", value=True)
|
| 191 |
+
run_button = gr.Button("Run",elem_id="btn")
|
| 192 |
+
|
| 193 |
+
with gr.Accordion("More input params (highly-recommended)", open=False, elem_id="accordion1"):
|
| 194 |
+
control_strength = gr.Slider(
|
| 195 |
+
label="Control Strength: ", show_label=True, minimum=0, maximum=1.1, value=1, step=0.01
|
| 196 |
+
)
|
| 197 |
+
with gr.Group():
|
| 198 |
+
seed = gr.Slider(
|
| 199 |
+
label="Seed: ", minimum=0, maximum=2147483647, step=1, value=551793204
|
| 200 |
+
)
|
| 201 |
+
randomize_seed = gr.Checkbox(label="Randomize seed", value=False)
|
| 202 |
+
|
| 203 |
+
with gr.Group():
|
| 204 |
+
with gr.Row():
|
| 205 |
+
guidance_scale = gr.Slider(
|
| 206 |
+
label="Guidance scale",
|
| 207 |
+
minimum=1,
|
| 208 |
+
maximum=12,
|
| 209 |
+
step=0.1,
|
| 210 |
+
value=12,
|
| 211 |
+
)
|
| 212 |
+
num_inference_steps = gr.Slider(
|
| 213 |
+
label="Number of inference steps",
|
| 214 |
+
minimum=1,
|
| 215 |
+
maximum=50,
|
| 216 |
+
step=1,
|
| 217 |
+
value=50,
|
| 218 |
+
)
|
| 219 |
+
with gr.Row(elem_id="Image"):
|
| 220 |
+
with gr.Tabs(elem_classes=["feedback1"]):
|
| 221 |
+
with gr.TabItem("User-specified Mask Image (Optional)"):
|
| 222 |
+
input_mask = gr.Image(type="numpy", label="Mask Image", height=640)
|
| 223 |
+
|
| 224 |
+
with gr.Column():
|
| 225 |
+
with gr.Tabs(elem_classes=["feedback"]):
|
| 226 |
+
with gr.TabItem("Outputs"):
|
| 227 |
+
result_gallery = gr.Gallery(label='Output', show_label=False, elem_id="gallery", preview=True)
|
| 228 |
+
with gr.Row():
|
| 229 |
+
def process_example(input_image, prompt, input_mask, original_image, selected_points): #
|
| 230 |
+
return input_image, prompt, input_mask, original_image, []
|
| 231 |
+
example = gr.Examples(
|
| 232 |
+
label="Input Example",
|
| 233 |
+
examples=image_examples,
|
| 234 |
+
inputs=[input_image, prompt, input_mask, original_image, selected_points],
|
| 235 |
+
outputs=[input_image, prompt, input_mask, original_image, selected_points],
|
| 236 |
+
fn=process_example,
|
| 237 |
+
run_on_click=True,
|
| 238 |
+
examples_per_page=10
|
| 239 |
+
)
|
| 240 |
+
|
| 241 |
+
# once user upload an image, the original image is stored in `original_image`
|
| 242 |
+
def store_img(img):
|
| 243 |
+
# image upload is too slow
|
| 244 |
+
if min(img.shape[0], img.shape[1]) > 512:
|
| 245 |
+
img = resize_image(img, 512)
|
| 246 |
+
if max(img.shape[0], img.shape[1])*1.0/min(img.shape[0], img.shape[1])>2.0:
|
| 247 |
+
raise gr.Error('image aspect ratio cannot be larger than 2.0')
|
| 248 |
+
return img, img, [], None # when new image is uploaded, `selected_points` should be empty
|
| 249 |
+
|
| 250 |
+
input_image.upload(
|
| 251 |
+
store_img,
|
| 252 |
+
[input_image],
|
| 253 |
+
[input_image, original_image, selected_points]
|
| 254 |
+
)
|
| 255 |
+
|
| 256 |
+
# user click the image to get points, and show the points on the image
|
| 257 |
+
def segmentation(img, sel_pix):
|
| 258 |
+
# online show seg mask
|
| 259 |
+
points = []
|
| 260 |
+
labels = []
|
| 261 |
+
for p, l in sel_pix:
|
| 262 |
+
points.append(p)
|
| 263 |
+
labels.append(l)
|
| 264 |
+
mobile_predictor.set_image(img if isinstance(img, np.ndarray) else np.array(img))
|
| 265 |
+
with torch.no_grad():
|
| 266 |
+
masks, _, _ = mobile_predictor.predict(point_coords=np.array(points), point_labels=np.array(labels), multimask_output=False)
|
| 267 |
+
|
| 268 |
+
output_mask = np.ones((masks.shape[1], masks.shape[2], 3))*255
|
| 269 |
+
for i in range(3):
|
| 270 |
+
output_mask[masks[0] == True, i] = 0.0
|
| 271 |
+
|
| 272 |
+
mask_all = np.ones((masks.shape[1], masks.shape[2], 3))
|
| 273 |
+
color_mask = np.random.random((1, 3)).tolist()[0]
|
| 274 |
+
for i in range(3):
|
| 275 |
+
mask_all[masks[0] == True, i] = color_mask[i]
|
| 276 |
+
masked_img = img / 255 * 0.3 + mask_all * 0.7
|
| 277 |
+
masked_img = masked_img*255
|
| 278 |
+
## draw points
|
| 279 |
+
for point, label in sel_pix:
|
| 280 |
+
cv2.drawMarker(masked_img, point, colors[label], markerType=markers[label], markerSize=20, thickness=5)
|
| 281 |
+
return masked_img, output_mask
|
| 282 |
+
|
| 283 |
+
def get_point(img, sel_pix, point_type, evt: gr.SelectData):
|
| 284 |
+
if point_type == 'foreground':
|
| 285 |
+
sel_pix.append((evt.index, 1)) # append the foreground_point
|
| 286 |
+
elif point_type == 'background':
|
| 287 |
+
sel_pix.append((evt.index, 0)) # append the background_point
|
| 288 |
+
else:
|
| 289 |
+
sel_pix.append((evt.index, 1)) # default foreground_point
|
| 290 |
+
|
| 291 |
+
if isinstance(img, int):
|
| 292 |
+
image_name = image_examples[img][0]
|
| 293 |
+
img = cv2.imread(image_name)
|
| 294 |
+
img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
|
| 295 |
+
|
| 296 |
+
# online show seg mask
|
| 297 |
+
masked_img, output_mask = segmentation(img, sel_pix)
|
| 298 |
+
return masked_img.astype(np.uint8), output_mask
|
| 299 |
+
|
| 300 |
+
input_image.select(
|
| 301 |
+
get_point,
|
| 302 |
+
[original_image, selected_points, radio],
|
| 303 |
+
[input_image, original_mask],
|
| 304 |
+
)
|
| 305 |
+
|
| 306 |
+
# undo the selected point
|
| 307 |
+
def undo_points(orig_img, sel_pix):
|
| 308 |
+
# draw points
|
| 309 |
+
output_mask = None
|
| 310 |
+
if len(sel_pix) != 0:
|
| 311 |
+
if isinstance(orig_img, int): # if orig_img is int, the image if select from examples
|
| 312 |
+
temp = cv2.imread(image_examples[orig_img][0])
|
| 313 |
+
temp = cv2.cvtColor(temp, cv2.COLOR_BGR2RGB)
|
| 314 |
+
else:
|
| 315 |
+
temp = orig_img.copy()
|
| 316 |
+
sel_pix.pop()
|
| 317 |
+
# online show seg mask
|
| 318 |
+
if len(sel_pix) !=0:
|
| 319 |
+
temp, output_mask = segmentation(temp, sel_pix)
|
| 320 |
+
return temp.astype(np.uint8), output_mask
|
| 321 |
+
else:
|
| 322 |
+
gr.Error("Nothing to Undo")
|
| 323 |
+
|
| 324 |
+
undo_button.click(
|
| 325 |
+
undo_points,
|
| 326 |
+
[original_image, selected_points],
|
| 327 |
+
[input_image, original_mask]
|
| 328 |
+
)
|
| 329 |
+
|
| 330 |
+
ips=[input_image, original_image, original_mask, input_mask, selected_points, prompt, negative_prompt, blending, invert_mask, control_strength, seed, randomize_seed, guidance_scale, num_inference_steps]
|
| 331 |
+
run_button.click(fn=process, inputs=ips, outputs=[result_gallery])
|
| 332 |
+
|
| 333 |
+
|
| 334 |
+
block.launch()
|
examples/brushnet/src/test_image.jpg
ADDED
|
examples/brushnet/src/test_mask.jpg
ADDED
|
requirements.txt
ADDED
|
@@ -0,0 +1,19 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
torch==1.12.1+cu116
|
| 2 |
+
torchvision==0.13.1+cu116
|
| 3 |
+
torchaudio==0.12.1
|
| 4 |
+
transformers>=4.25.1
|
| 5 |
+
ftfy
|
| 6 |
+
tensorboard
|
| 7 |
+
datasets
|
| 8 |
+
Pillow==9.5.0
|
| 9 |
+
opencv-python
|
| 10 |
+
imgaug
|
| 11 |
+
accelerate==0.20.3
|
| 12 |
+
image-reward
|
| 13 |
+
hpsv2
|
| 14 |
+
torchmetrics
|
| 15 |
+
open-clip-torch
|
| 16 |
+
clip
|
| 17 |
+
gradio==3.50.0
|
| 18 |
+
segment_anything
|
| 19 |
+
git+https://github.com/TencentARC/BrushNet.git
|