NVComposer / utils /save_video.py
l-li's picture
init(*): initialization.
0b23d5a
raw
history blame
8.93 kB
import os
import numpy as np
from tqdm import tqdm
from PIL import Image
import torch
import torchvision
from torch import Tensor
from torchvision.utils import make_grid
from torchvision.transforms.functional import to_tensor
def frames_to_mp4(frame_dir, output_path, fps):
def read_first_n_frames(d: os.PathLike, num_frames: int):
if num_frames:
images = [
Image.open(os.path.join(d, f))
for f in sorted(os.listdir(d))[:num_frames]
]
else:
images = [Image.open(os.path.join(d, f)) for f in sorted(os.listdir(d))]
images = [to_tensor(x) for x in images]
return torch.stack(images)
videos = read_first_n_frames(frame_dir, num_frames=None)
videos = videos.mul(255).to(torch.uint8).permute(0, 2, 3, 1)
torchvision.io.write_video(
output_path, videos, fps=fps, video_codec="h264", options={"crf": "10"}
)
def tensor_to_mp4(video, savepath, fps, rescale=True, nrow=None):
"""
video: torch.Tensor, b,c,t,h,w, 0-1
if -1~1, enable rescale=True
"""
n = video.shape[0]
video = video.permute(2, 0, 1, 3, 4) # t,n,c,h,w
nrow = int(np.sqrt(n)) if nrow is None else nrow
frame_grids = [
torchvision.utils.make_grid(framesheet, nrow=nrow) for framesheet in video
] # [3, grid_h, grid_w]
# stack in temporal dim [T, 3, grid_h, grid_w]
grid = torch.stack(frame_grids, dim=0)
grid = torch.clamp(grid.float(), -1.0, 1.0)
if rescale:
grid = (grid + 1.0) / 2.0
# [T, 3, grid_h, grid_w] -> [T, grid_h, grid_w, 3]
grid = (grid * 255).to(torch.uint8).permute(0, 2, 3, 1)
# print(f'Save video to {savepath}')
torchvision.io.write_video(
savepath, grid, fps=fps, video_codec="h264", options={"crf": "10"}
)
def tensor2videogrids(video, root, filename, fps, rescale=True, clamp=True):
assert video.dim() == 5 # b,c,t,h,w
assert isinstance(video, torch.Tensor)
video = video.detach().cpu()
if clamp:
video = torch.clamp(video, -1.0, 1.0)
n = video.shape[0]
video = video.permute(2, 0, 1, 3, 4) # t,n,c,h,w
frame_grids = [
torchvision.utils.make_grid(framesheet, nrow=int(np.sqrt(n)))
for framesheet in video
] # [3, grid_h, grid_w]
# stack in temporal dim [T, 3, grid_h, grid_w]
grid = torch.stack(frame_grids, dim=0)
if rescale:
grid = (grid + 1.0) / 2.0
# [T, 3, grid_h, grid_w] -> [T, grid_h, grid_w, 3]
grid = (grid * 255).to(torch.uint8).permute(0, 2, 3, 1)
path = os.path.join(root, filename)
# print('Save video ...')
torchvision.io.write_video(
path, grid, fps=fps, video_codec="h264", options={"crf": "10"}
)
# print('Finish!')
def log_txt_as_img(wh, xc, size=10):
# wh a tuple of (width, height)
# xc a list of captions to plot
b = len(xc)
txts = list()
for bi in range(b):
txt = Image.new("RGB", wh, color="white")
draw = ImageDraw.Draw(txt)
font = ImageFont.truetype("data/DejaVuSans.ttf", size=size)
nc = int(40 * (wh[0] / 256))
lines = "\n".join(
xc[bi][start : start + nc] for start in range(0, len(xc[bi]), nc)
)
try:
draw.text((0, 0), lines, fill="black", font=font)
except UnicodeEncodeError:
print("Cant encode string for logging. Skipping.")
txt = np.array(txt).transpose(2, 0, 1) / 127.5 - 1.0
txts.append(txt)
txts = np.stack(txts)
txts = torch.tensor(txts)
return txts
def log_local(batch_logs, save_dir, filename, save_fps=10, rescale=True):
if batch_logs is None:
return None
""" save images and videos from images dict """
def save_img_grid(grid, path, rescale):
if rescale:
grid = (grid + 1.0) / 2.0 # -1,1 -> 0,1; c,h,w
grid = grid.transpose(0, 1).transpose(1, 2).squeeze(-1)
grid = grid.numpy()
grid = (grid * 255).astype(np.uint8)
os.makedirs(os.path.split(path)[0], exist_ok=True)
Image.fromarray(grid).save(path)
for key in batch_logs:
value = batch_logs[key]
if isinstance(value, list) and isinstance(value[0], str):
# a batch of captions
path = os.path.join(save_dir, "%s-%s.txt" % (key, filename))
with open(path, "w") as f:
for i, txt in enumerate(value):
f.write(f"idx={i}, txt={txt}\n")
f.close()
elif isinstance(value, torch.Tensor) and value.dim() == 5:
# save video grids
video = value # b,c,t,h,w
# only save grayscale or rgb mode
if video.shape[1] != 1 and video.shape[1] != 3:
continue
n = video.shape[0]
video = video.permute(2, 0, 1, 3, 4) # t,n,c,h,w
frame_grids = [
torchvision.utils.make_grid(framesheet, nrow=int(1))
for framesheet in video
] # [3, n*h, 1*w]
# stack in temporal dim [t, 3, n*h, w]
grid = torch.stack(frame_grids, dim=0)
if rescale:
grid = (grid + 1.0) / 2.0
grid = (grid * 255).to(torch.uint8).permute(0, 2, 3, 1)
path = os.path.join(save_dir, "%s-%s.mp4" % (key, filename))
torchvision.io.write_video(
path, grid, fps=save_fps, video_codec="h264", options={"crf": "10"}
)
elif isinstance(value, torch.Tensor) and value.dim() == 4:
img = value
if img.shape[1] != 1 and img.shape[1] != 3:
continue
n = img.shape[0]
grid = torchvision.utils.make_grid(img, nrow=1)
path = os.path.join(save_dir, "%s-%s.jpg" % (key, filename))
save_img_grid(grid, path, rescale)
else:
pass
def prepare_to_log(batch_logs, max_images=100000, clamp=True):
if batch_logs is None:
return None
# process
for key in batch_logs:
N = (
batch_logs[key].shape[0]
if hasattr(batch_logs[key], "shape")
else len(batch_logs[key])
)
N = min(N, max_images)
batch_logs[key] = batch_logs[key][:N]
if isinstance(batch_logs[key], torch.Tensor):
batch_logs[key] = batch_logs[key].detach().cpu()
if clamp:
try:
batch_logs[key] = torch.clamp(batch_logs[key].float(), -1.0, 1.0)
except RuntimeError:
print("clamp_scalar_cpu not implemented for Half")
return batch_logs
def fill_with_black_squares(video, desired_len: int) -> Tensor:
if len(video) >= desired_len:
return video
return torch.cat(
[
video,
torch.zeros_like(video[0])
.unsqueeze(0)
.repeat(desired_len - len(video), 1, 1, 1),
],
dim=0,
)
def load_num_videos(data_path, num_videos):
# first argument can be either data_path of np array
if isinstance(data_path, str):
videos = np.load(data_path)["arr_0"] # NTHWC
elif isinstance(data_path, np.ndarray):
videos = data_path
else:
raise Exception
if num_videos is not None:
videos = videos[:num_videos, :, :, :, :]
return videos
def npz_to_video_grid(
data_path, out_path, num_frames, fps, num_videos=None, nrow=None, verbose=True
):
if isinstance(data_path, str):
videos = load_num_videos(data_path, num_videos)
elif isinstance(data_path, np.ndarray):
videos = data_path
else:
raise Exception
n, t, h, w, c = videos.shape
videos_th = []
for i in range(n):
video = videos[i, :, :, :, :]
images = [video[j, :, :, :] for j in range(t)]
images = [to_tensor(img) for img in images]
video = torch.stack(images)
videos_th.append(video)
if verbose:
videos = [
fill_with_black_squares(v, num_frames)
for v in tqdm(videos_th, desc="Adding empty frames")
] # NTCHW
else:
videos = [fill_with_black_squares(v, num_frames) for v in videos_th] # NTCHW
frame_grids = torch.stack(videos).permute(1, 0, 2, 3, 4) # [T, N, C, H, W]
if nrow is None:
nrow = int(np.ceil(np.sqrt(n)))
if verbose:
frame_grids = [
make_grid(fs, nrow=nrow) for fs in tqdm(frame_grids, desc="Making grids")
]
else:
frame_grids = [make_grid(fs, nrow=nrow) for fs in frame_grids]
if os.path.dirname(out_path) != "":
os.makedirs(os.path.dirname(out_path), exist_ok=True)
frame_grids = (
(torch.stack(frame_grids) * 255).to(torch.uint8).permute(0, 2, 3, 1)
) # [T, H, W, C]
torchvision.io.write_video(
out_path, frame_grids, fps=fps, video_codec="h264", options={"crf": "10"}
)