Spaces:
Runtime error
Runtime error
| #!/usr/bin/env python | |
| import gradio as gr | |
| import PIL.Image | |
| from model import ADAPTER_NAMES, Model | |
| from utils import MAX_SEED, randomize_seed_fn, styles, style_names, apply_style | |
| default_style_name = "Photographic" | |
| def create_demo(model: Model) -> gr.Blocks: | |
| def run( | |
| image: PIL.Image.Image, | |
| prompt: str, | |
| negative_prompt: str, | |
| adapter_name: str, | |
| style_name: str = default_style_name, | |
| num_inference_steps: int = 30, | |
| guidance_scale: float = 5.0, | |
| adapter_conditioning_scale: float = 1.0, | |
| cond_tau: float = 1.0, | |
| seed: int = 0, | |
| apply_preprocess: bool = True, | |
| progress=gr.Progress(track_tqdm=True), | |
| ) -> list[PIL.Image.Image]: | |
| prompt, negative_prompt = apply_style(style_name, prompt, negative_prompt) | |
| return model.run( | |
| image=image, | |
| prompt=prompt, | |
| negative_prompt=negative_prompt, | |
| adapter_name=adapter_name, | |
| num_inference_steps=num_inference_steps, | |
| guidance_scale=guidance_scale, | |
| adapter_conditioning_scale=adapter_conditioning_scale, | |
| cond_tau=cond_tau, | |
| seed=seed, | |
| apply_preprocess=apply_preprocess, | |
| ) | |
| with gr.Blocks() as demo: | |
| with gr.Row(): | |
| with gr.Column(): | |
| with gr.Group(): | |
| image = gr.Image(label="Input image", type="pil", height=600) | |
| prompt = gr.Textbox(label="Prompt") | |
| adapter_name = gr.Dropdown(label="Adapter", choices=ADAPTER_NAMES, value=ADAPTER_NAMES[0]) | |
| run_button = gr.Button("Run") | |
| with gr.Accordion("Advanced options", open=False): | |
| apply_preprocess = gr.Checkbox(label="Apply preprocess", value=True) | |
| negative_prompt = gr.Textbox( | |
| label="Negative prompt", | |
| value="", | |
| ) | |
| style = gr.Dropdown(choices=style_names, value=default_style_name, label="Style") | |
| num_inference_steps = gr.Slider( | |
| label="Number of steps", | |
| minimum=1, | |
| maximum=Model.MAX_NUM_INFERENCE_STEPS, | |
| step=1, | |
| value=30, | |
| ) | |
| guidance_scale = gr.Slider( | |
| label="Guidance scale", | |
| minimum=0.1, | |
| maximum=30.0, | |
| step=0.1, | |
| value=5.0, | |
| ) | |
| adapter_conditioning_scale = gr.Slider( | |
| label="Adapter Conditioning Scale", | |
| minimum=0.5, | |
| maximum=1, | |
| step=0.1, | |
| value=1.0, | |
| ) | |
| cond_tau = gr.Slider( | |
| label="Fraction of timesteps for which adapter should be applied", | |
| minimum=0.5, | |
| maximum=1.0, | |
| step=0.1, | |
| value=1.0, | |
| ) | |
| seed = gr.Slider( | |
| label="Seed", | |
| minimum=0, | |
| maximum=MAX_SEED, | |
| step=1, | |
| value=0, | |
| ) | |
| randomize_seed = gr.Checkbox(label="Randomize seed", value=True) | |
| with gr.Column(): | |
| result = gr.Gallery(label="Result", columns=2, height=600, object_fit="scale-down", show_label=False) | |
| inputs = [ | |
| image, | |
| prompt, | |
| negative_prompt, | |
| adapter_name, | |
| style, | |
| num_inference_steps, | |
| guidance_scale, | |
| adapter_conditioning_scale, | |
| cond_tau, | |
| seed, | |
| apply_preprocess, | |
| ] | |
| prompt.submit( | |
| fn=randomize_seed_fn, | |
| inputs=[seed, randomize_seed], | |
| outputs=seed, | |
| queue=False, | |
| api_name=False, | |
| ).then( | |
| fn=run, | |
| inputs=inputs, | |
| outputs=result, | |
| api_name=False, | |
| ) | |
| negative_prompt.submit( | |
| fn=randomize_seed_fn, | |
| inputs=[seed, randomize_seed], | |
| outputs=seed, | |
| queue=False, | |
| api_name=False, | |
| ).then( | |
| fn=run, | |
| inputs=inputs, | |
| outputs=result, | |
| api_name=False, | |
| ) | |
| run_button.click( | |
| fn=randomize_seed_fn, | |
| inputs=[seed, randomize_seed], | |
| outputs=seed, | |
| queue=False, | |
| api_name=False, | |
| ).then( | |
| fn=run, | |
| inputs=inputs, | |
| outputs=result, | |
| api_name="run", | |
| ) | |
| return demo | |
| if __name__ == "__main__": | |
| model = Model(ADAPTER_NAMES[0]) | |
| demo = create_demo(model) | |
| demo.queue(max_size=20).launch() | |