File size: 27,496 Bytes
00274d1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
from diffsynth import ModelManager
from diffsynth.pipelines.base import BasePipeline
from diffsynth.vram_management import enable_vram_management, AutoWrappedModule, AutoWrappedLinear

from model.dit import WanModel
from model.text_encoder import WanTextEncoder
from model.vae import WanVideoVAE
from model.image_encoder import WanImageEncoder
from model.prompter import WanPrompter
from scheduler.flow_match import FlowMatchScheduler

import torch, os
from einops import rearrange, repeat
import numpy as np
import PIL.Image
from tqdm import tqdm
from safetensors import safe_open

from model.text_encoder import T5RelativeEmbedding, T5LayerNorm
from model.dit import WanLayerNorm, WanRMSNorm, WanSelfAttention
from model.vae import RMS_norm, CausalConv3d, Upsample


def binary_tensor_to_indices(tensor):
    assert tensor.dim() == 2, "Input tensor must be in [b, t]"
    indices = [(row == 1).nonzero(as_tuple=True)[0] for row in tensor]
    return indices

def propagate_visualize_attention_arg(model, visualize_attention=False):
        """
        Recursively set the visualize_attention parameter to True for all WanSelfAttention modules
        Only for inference/test mode
        """
        for name, module in model.named_modules():
            if isinstance(module, WanSelfAttention):
                if "blocks.0.self_attn" in name or "blocks.19.self_attn" in name or "blocks.39.self_attn" in name:
                    print(f"Set `visualize_attention` to {visualize_attention} for {name}")
                    module.visualize_attention = visualize_attention

class WanVideoPipeline(BasePipeline):

    def __init__(self, device="cuda", torch_dtype=torch.float16, tokenizer_path=None):
        super().__init__(device=device, torch_dtype=torch_dtype)
        self.scheduler = FlowMatchScheduler(shift=5, sigma_min=0.0, extra_one_step=True)
        self.prompter = WanPrompter(tokenizer_path=tokenizer_path)
        self.text_encoder: WanTextEncoder = None
        self.image_encoder: WanImageEncoder = None
        self.dit: WanModel = None
        self.vae: WanVideoVAE = None
        self.model_names = ['text_encoder', 'dit', 'vae']
        self.height_division_factor = 16
        self.width_division_factor = 16


    def enable_vram_management(self, num_persistent_param_in_dit=None):
        dtype = next(iter(self.text_encoder.parameters())).dtype
        enable_vram_management(
            self.text_encoder,
            module_map = {
                torch.nn.Linear: AutoWrappedLinear,
                torch.nn.Embedding: AutoWrappedModule,
                T5RelativeEmbedding: AutoWrappedModule,
                T5LayerNorm: AutoWrappedModule,
            },
            module_config = dict(
                offload_dtype=dtype,
                offload_device="cpu",
                onload_dtype=dtype,
                onload_device="cpu",
                computation_dtype=self.torch_dtype,
                computation_device=self.device,
            ),
        )
        dtype = next(iter(self.dit.parameters())).dtype
        enable_vram_management(
            self.dit,
            module_map = {
                torch.nn.Linear: AutoWrappedLinear,
                torch.nn.Conv3d: AutoWrappedModule,
                torch.nn.LayerNorm: AutoWrappedModule,
                WanLayerNorm: AutoWrappedModule,
                WanRMSNorm: AutoWrappedModule,
            },
            module_config = dict(
                offload_dtype=dtype,
                offload_device="cpu",
                onload_dtype=dtype,
                onload_device=self.device,
                computation_dtype=self.torch_dtype,
                computation_device=self.device,
            ),
            max_num_param=num_persistent_param_in_dit,
            overflow_module_config = dict(
                offload_dtype=dtype,
                offload_device="cpu",
                onload_dtype=dtype,
                onload_device="cpu",
                computation_dtype=self.torch_dtype,
                computation_device=self.device,
            ),
        )
        dtype = next(iter(self.vae.parameters())).dtype
        enable_vram_management(
            self.vae,
            module_map = {
                torch.nn.Linear: AutoWrappedLinear,
                torch.nn.Conv2d: AutoWrappedModule,
                RMS_norm: AutoWrappedModule,
                CausalConv3d: AutoWrappedModule,
                Upsample: AutoWrappedModule,
                torch.nn.SiLU: AutoWrappedModule,
                torch.nn.Dropout: AutoWrappedModule,
            },
            module_config = dict(
                offload_dtype=dtype,
                offload_device="cpu",
                onload_dtype=dtype,
                onload_device=self.device,
                computation_dtype=self.torch_dtype,
                computation_device=self.device,
            ),
        )
        if self.image_encoder is not None:
            dtype = next(iter(self.image_encoder.parameters())).dtype
            enable_vram_management(
                self.image_encoder,
                module_map = {
                    torch.nn.Linear: AutoWrappedLinear,
                    torch.nn.Conv2d: AutoWrappedModule,
                    torch.nn.LayerNorm: AutoWrappedModule,
                },
                module_config = dict(
                    offload_dtype=dtype,
                    offload_device="cpu",
                    onload_dtype=dtype,
                    onload_device="cpu",
                    computation_dtype=self.torch_dtype,
                    computation_device=self.device,
                ),
            )
        self.enable_cpu_offload()

    def fetch_models_from_model_manager(self, model_manager: ModelManager):
        text_encoder_model_and_path = model_manager.fetch_model("wan_video_text_encoder", require_model_path=True)
        if text_encoder_model_and_path is not None:
            self.text_encoder, tokenizer_path = text_encoder_model_and_path
            self.prompter.fetch_models(self.text_encoder)
            self.prompter.fetch_tokenizer(os.path.join(os.path.dirname(tokenizer_path), "google/umt5-xxl"))
        self.dit = model_manager.fetch_model("wan_video_dit")
        self.vae = model_manager.fetch_model("wan_video_vae")
        self.image_encoder = model_manager.fetch_model("wan_video_image_encoder")
    
    def _init_component_from_checkpoint_path(self, model_cls, state_dict_path, strict=True, config_dict=None):
        config = {}
        state_dict = self._load_state_dict(state_dict_path)
        if hasattr(model_cls, "state_dict_converter"):
            state_dict_converter = model_cls.state_dict_converter()
            state_dict = state_dict_converter.from_civitai(state_dict)
            if isinstance(state_dict, tuple):
                state_dict, config = state_dict
        config.update(config_dict or {})
        model = model_cls(**config)
        if "use_local_lora" in config_dict or "use_dera" in config_dict:
            strict = False
        missing_keys, unexpected_keys = model.load_state_dict(state_dict, strict=strict)
        print(f"Missing keys: {missing_keys}")
        print(f"Unexpected keys: {unexpected_keys}")
        return model
    
    def _load_state_dict(self, state_dict_paths):
        if isinstance(state_dict_paths, str):
            state_dict_paths = [state_dict_paths]
        state_dict = {}
        for state_dict_path in tqdm(state_dict_paths, desc="Reading file(s) from disk"):
            state_dict.update(self._load_single_file(state_dict_path))
        return state_dict
    
    def _load_single_file(self, file_path):
        if file_path.endswith(".safetensors"):
            return self._load_state_dict_from_safetensors(file_path)
        else:
            return torch.load(file_path, map_location='cpu')
    
    def _load_state_dict_from_safetensors(self, file_path, torch_dtype=None):
        state_dict = {}
        with safe_open(file_path, framework="pt", device="cpu") as f:
            for k in f.keys():
                state_dict[k] = f.get_tensor(k)
                if torch_dtype is not None:
                    state_dict[k] = state_dict[k].to(torch_dtype)
        return state_dict
    
    def initialize_dummy_dit(self, config):
        print("Initializing a dummy DIT model.")
        self.dit = WanModel(**config)
        print("Dummy DIT model is initialized.")
    
    def fetch_models_from_checkpoints(self, path_dict, config_dict=None):
        default_config = {"text_encoder": {}, "dit": {}, "vae": {}, "image_encoder": {}}
        config_dict = {**default_config, **(config_dict or {})}
        components = {
            "text_encoder": WanTextEncoder,
            "dit": WanModel,
            "vae": WanVideoVAE,
            "image_encoder": WanImageEncoder
        }
        for name, model_cls in components.items():
            if name not in path_dict:
                print(f"Component {name} is not found in the checkpoint path dict. Skipping.")
                continue
            path = path_dict[name]
            config = config_dict.get(name, {})
            print(f"Loading {name} from {path} with config {config}.")
            setattr(self, name, self._init_component_from_checkpoint_path(model_cls, path, config_dict=config))
            print(f"Initialized {name} from checkpoint.")
        if "text_encoder" in path_dict:
            self.prompter.fetch_models(self.text_encoder)
            self.prompter.fetch_tokenizer(os.path.join(os.path.dirname(path_dict["text_encoder"]), "google/umt5-xxl"))
        print("Initialized prompter from checkpoint.")
        print("All components are initialized from checkpoints.")

    @staticmethod
    def from_model_manager(model_manager: ModelManager, torch_dtype=None, device=None):
        if device is None: device = model_manager.device
        if torch_dtype is None: torch_dtype = model_manager.torch_dtype
        pipe = WanVideoPipeline(device=device, torch_dtype=torch_dtype)
        pipe.fetch_models_from_model_manager(model_manager)
        return pipe
    
    def denoising_model(self):
        return self.dit

    def encode_prompt(self, prompt, positive=True):
        prompt_emb = self.prompter.encode_prompt(prompt, positive=positive)
        return {"context": prompt_emb}
    
    def encode_image(self, image, num_frames, height, width):
        with torch.amp.autocast(dtype=torch.bfloat16, device_type=torch.device(self.device).type):
            image = self.preprocess_image(image.resize((width, height))).to(self.device)
            clip_context = self.image_encoder.encode_image([image])
            msk = torch.ones(1, num_frames, height//8, width//8, device=self.device)
            msk[:, 1:] = 0
            msk = torch.concat([torch.repeat_interleave(msk[:, 0:1], repeats=4, dim=1), msk[:, 1:]], dim=1)
            msk = msk.view(1, msk.shape[1] // 4, 4, height//8, width//8)
            msk = msk.transpose(1, 2)[0]
            y = self.vae.encode([torch.concat([image.transpose(0, 1), torch.zeros(3, num_frames-1, height, width).to(image.device)], dim=1)], device=self.device)[0]
            y = torch.concat([msk, y])
        return {"clip_fea": clip_context, "y": [y]}
    
    def check_and_fix_image_or_video_tensor_input(self, _tensor):
        assert isinstance(_tensor, torch.Tensor), "Input must be a tensor."
        if _tensor.max() <= 255 and _tensor.max() > 1.0:
            _tensor = _tensor.to(self.device) / 127.5 - 1
            print("Input tensor is converted from [0, 255] to [-1, 1].")
        elif _tensor.min() >= 0 and _tensor.max() <= 1:
            _tensor = _tensor.to(self.device) * 2 - 1
            print("Input tensor is converted from [0, 1] to [-1, 1].")
        return _tensor
    
    def encode_video_with_mask(self, video, num_frames, height, width, condition_preserved_mask):
        with torch.amp.autocast(dtype=torch.bfloat16, device_type=torch.device(self.device).type):
            video = video.to(self.device)
            y = self.vae.encode(video, device=self.device)
            msk = condition_preserved_mask
            assert msk is not None, "The mask must be provided for the masked video input."
            assert msk.dim() == 2, "The mask must be a 2D tensor in [b, t]."
            assert msk.shape[0] == video.shape[0], "The batch size of the mask must be the same as the input video."
            assert msk.shape[1] == num_frames, "The number of frames in the mask must be the same as the input video."
            msk = msk.to(self.device)
            msk = msk.unsqueeze(-1).unsqueeze(-1)
            msk = repeat(msk, 'b t 1 1 -> b t h w', h=height//8, w=width//8)
            msk = torch.concat([torch.repeat_interleave(msk[:, 0:1], repeats=4, dim=1), msk[:, 1:]], dim=1)
            msk = msk.view(video.shape[0], msk.shape[1] // 4, 4, height//8, width//8)  # b, t, c, h, w
            msk = msk.transpose(1, 2)  # b, c, t, h, w
            y = torch.concat([msk, y], dim=1)
        return y
    
    def encode_video_with_mask_sparse(self, video, height, width, condition_preserved_mask, sketch_local_mask=None):
        with torch.amp.autocast(dtype=torch.bfloat16, device_type=torch.device(self.device).type):
            batch_size = video.shape[0]
            cond_indices = binary_tensor_to_indices(condition_preserved_mask)
            sequence_cond_compressed_indices = [(cond_index + 3) // 4 for cond_index in cond_indices]
            video = video.to(self.device)
            video_latent = self.vae.encode(video, device=self.device)
            video_latent = video_latent[:, :, sequence_cond_compressed_indices[0], :, :]
            msk = condition_preserved_mask.to(self.device)
            msk = msk.unsqueeze(-1).unsqueeze(-1)  # b, t, 1, 1
            msk = repeat(msk, 'b t 1 1 -> b t h w', h=height//8, w=width//8)
            msk = torch.concat([torch.repeat_interleave(msk[:, 0:1], repeats=4, dim=1), msk[:, 1:]], dim=1)
            msk = msk.view(batch_size, msk.shape[1] // 4, 4, height//8, width//8)  # b, t, 4, h//8, w//8
            msk = msk.transpose(1, 2)  # b, 4, t, h//8, w//8
            msk = msk[:, :, sequence_cond_compressed_indices[0], :, :]
            
            if sketch_local_mask is not None:
                sketch_local_mask = sketch_local_mask.to(self.device)
                if sketch_local_mask.shape[-2:] != (height//8, width//8):
                    sk_batch_t = sketch_local_mask.shape[0] * sketch_local_mask.shape[2]
                    sketch_local_mask_reshaped = sketch_local_mask.reshape(sk_batch_t, 1, sketch_local_mask.shape[3], sketch_local_mask.shape[4])
                    sketch_local_mask_resized = torch.nn.functional.interpolate(
                        sketch_local_mask_reshaped,
                        size=(height//8, width//8), 
                        mode='nearest'
                    )
                    sketch_local_mask_resized = sketch_local_mask_resized.reshape(
                        sketch_local_mask.shape[0], 
                        sketch_local_mask.shape[1], 
                        sketch_local_mask.shape[2], 
                        height//8, width//8
                    )
                else:
                    sketch_local_mask_resized = sketch_local_mask
                    
                sketch_mask = sketch_local_mask_resized
                sketch_mask = torch.concat([torch.repeat_interleave(sketch_mask[:, :, 0:1], repeats=4, dim=2), sketch_mask[:, :, 1:]], dim=2)
                sketch_mask = sketch_mask.view(batch_size, sketch_mask.shape[1], sketch_mask.shape[2] // 4, 4, height//8, width//8)
                sketch_mask = sketch_mask.permute(0, 1, 3, 2, 4, 5)  # [b, 1, 4, t//4, h//8, w//8]
                sketch_mask = sketch_mask.view(batch_size, 4, sketch_mask.shape[3], height//8, width//8)  # [b, 4, t//4, h//8, w//8]
                sketch_mask = sketch_mask[:, :, sequence_cond_compressed_indices[0], :, :]  # [b, 4, len(indices), h//8, w//8]
                
                combined_latent = torch.cat([msk, video_latent, sketch_mask], dim=1)
            else:
                combined_latent = torch.concat([msk, video_latent], dim=1)
            
        return combined_latent, sequence_cond_compressed_indices  # b, c=(4+16+4=24), t, h, w when sketch_local_mask is provided
    
    def encode_image_or_masked_video(self, image_or_masked_video, num_frames, height, width, condition_preserved_mask=None):
        with torch.amp.autocast(dtype=torch.bfloat16, device_type=torch.device(self.device).type):
            batch_size = image_or_masked_video.shape[0]
            if isinstance(image_or_masked_video, PIL.Image.Image) or (isinstance(image_or_masked_video, torch.Tensor) and image_or_masked_video.dim() <= 4):
                if isinstance(image_or_masked_video, PIL.Image.Image):
                    image_or_masked_video = self.preprocess_image(image_or_masked_video.resize((width, height))).to(self.device)
                else:
                    if image_or_masked_video.dim() == 3:
                        image_or_masked_video = image_or_masked_video.unsqueeze(0)  # b=1, c, h, w
                    image_or_masked_video = image_or_masked_video.to(self.device)
                y = self.vae.encode([torch.concat([image_or_masked_video.transpose(0, 1), torch.zeros(3, num_frames-1, height, width).to(image_or_masked_video.device)], dim=1)], device=self.device)
                msk_idx_to_be_zero = range(1, num_frames)
                clip_context = self.image_encoder.encode_image(image_or_masked_video.unsqueeze(1))  # need to be [b, 1, c, h, w]
                msk = torch.ones(batch_size, num_frames, height//8, width//8, device=self.device)
                msk[:, msk_idx_to_be_zero] = 0
                msk = torch.concat([torch.repeat_interleave(msk[:, 0:1], repeats=4, dim=1), msk[:, 1:]], dim=1)
                msk = msk.view(batch_size, msk.shape[1] // 4, 4, height//8, width//8)
                msk = msk.transpose(1, 2)
            elif isinstance(image_or_masked_video, torch.Tensor) and image_or_masked_video.dim() == 5:
                image_or_masked_video = image_or_masked_video.to(self.device)
                first_image = image_or_masked_video[:, :, 0, :, :].unsqueeze(1)
                clip_context = self.image_encoder.encode_image(first_image)
                y = self.vae.encode(image_or_masked_video, device=self.device)
                msk = condition_preserved_mask  # b, t
                assert msk is not None, "The mask must be provided for the masked video input."
                assert msk.dim() == 2, "The mask must be a 2D tensor in [b, t]."
                assert msk.shape[0] == batch_size, "The batch size of the mask must be the same as the input video."
                assert msk.shape[1] == num_frames, "The number of frames in the mask must be the same as the input video."
                msk = msk.to(self.device)
                msk = msk.unsqueeze(-1).unsqueeze(-1)  # b, t, 1, 1
                msk = repeat(msk, 'b t 1 1 -> b t h w', h=height//8, w=width//8)
                msk = torch.concat([torch.repeat_interleave(msk[:, 0:1], repeats=4, dim=1), msk[:, 1:]], dim=1)
                msk = msk.view(batch_size, msk.shape[1] // 4, 4, height//8, width//8)  # b, t, 4, h//8, w//8
                msk = msk.transpose(1, 2)  # b, 4, t, h//8, w//8
            else:
                raise ValueError("Input must be an image (PIL/Tensor in [b, c, h, w]) or a masked video (Tensor in [b, c, t, h, w]).")

        y = torch.concat([msk, y], dim=1)
        return {"clip_fea": clip_context, "y": y}

    def tensor2video(self, frames):
        frames = rearrange(frames, "C T H W -> T H W C")
        frames = ((frames.float() + 1) * 127.5).clip(0, 255).cpu().numpy().astype(np.uint8)
        frames = [PIL.Image.fromarray(frame) for frame in frames]
        return frames
    
    def prepare_extra_input(self, latents=None):
        return {"seq_len": latents.shape[2] * latents.shape[3] * latents.shape[4] // 4}
    
    def encode_video(self, input_video, tiled=True, tile_size=(34, 34), tile_stride=(18, 16)):
        with torch.amp.autocast(dtype=torch.bfloat16, device_type=torch.device(self.device).type):
            latents = self.vae.encode(input_video, device=self.device, tiled=tiled, tile_size=tile_size, tile_stride=tile_stride)
        return latents
    
    def decode_video(self, latents, tiled=True, tile_size=(34, 34), tile_stride=(18, 16)):
        with torch.amp.autocast(dtype=torch.bfloat16, device_type=torch.device(self.device).type):
            frames = self.vae.decode(latents, device=self.device, tiled=tiled, tile_size=tile_size, tile_stride=tile_stride)
        return frames

    @torch.no_grad()
    def __call__(
        self,
        prompt,
        negative_prompt="",
        input_image=None,
        input_video=None,
        denoising_strength=1.0,
        seed=None,
        rand_device="cpu",
        height=480,
        width=832,
        num_frames=81,
        cfg_scale=5.0,
        num_inference_steps=50,
        sigma_shift=5.0,
        tiled=True,
        tile_size=(30, 52),
        tile_stride=(15, 26),
        progress_bar_cmd=tqdm,
        # progress_bar_st=None,
        input_condition_video=None,
        input_condition_preserved_mask=None,
        input_condition_video_sketch=None,
        input_condition_preserved_mask_sketch=None,
        sketch_local_mask=None,
        visualize_attention=False,
        output_path=None,
        batch_idx=None,
        sequence_cond_residual_scale=1.0,
    ):
        height, width = self.check_resize_height_width(height, width)
        if num_frames % 4 != 1:
            num_frames = (num_frames + 2) // 4 * 4 + 1
            print(f"Only `num_frames % 4 != 1` is acceptable. We round it up to {num_frames}.")
        
        tiler_kwargs = {"tiled": tiled, "tile_size": tile_size, "tile_stride": tile_stride}

        self.scheduler.set_timesteps(num_inference_steps, denoising_strength, shift=sigma_shift)

        noise = self.generate_noise((1, 16, (num_frames - 1) // 4 + 1, height//8, width//8), seed=seed, device=rand_device, dtype=torch.float32).to(self.device)
        if input_video is not None:
            self.load_models_to_device(['vae'])
            input_video = self.preprocess_images(input_video)
            input_video = torch.stack(input_video, dim=2)
            latents = self.encode_video(input_video, **tiler_kwargs).to(dtype=noise.dtype, device=noise.device)
            latents = self.scheduler.add_noise(latents, noise, timestep=self.scheduler.timesteps[0])
        else:
            latents = noise
        
        self.load_models_to_device(["text_encoder"])
        prompt_emb_posi = self.encode_prompt(prompt, positive=True)
        if cfg_scale != 1.0:
            prompt_emb_nega = self.encode_prompt(negative_prompt, positive=False)
            
        self.load_models_to_device(["image_encoder", "vae"])
        if input_image is not None and self.image_encoder is not None:
            image_emb = self.encode_image(input_image, num_frames, height, width)
        elif input_condition_video is not None and self.image_encoder is not None:
            assert input_condition_preserved_mask is not None, "`input_condition_preserved_mask` must not be None when `input_condition_video` is given."
            image_emb = self.encode_image_or_masked_video(input_condition_video, num_frames, height, width, input_condition_preserved_mask)
        else:
            image_emb = {}
            
        # Extra input
        extra_input = self.prepare_extra_input(latents)
        if self.dit.use_sequence_cond:
            assert input_condition_video_sketch is not None, "`input_condition_video_sketch` must not be None when `use_sequence_cond` is True."
            assert input_condition_preserved_mask_sketch is not None, "`input_condition_preserved_mask_sketch` must not be None when `input_condition_video_sketch` is given."
            
            if self.dit.sequence_cond_mode == "sparse":
                sequence_cond, sequence_cond_compressed_indices = self.encode_video_with_mask_sparse(input_condition_video_sketch, height, width, input_condition_preserved_mask_sketch, sketch_local_mask)
                extra_input.update({"sequence_cond": sequence_cond,
                                    "sequence_cond_compressed_indices": sequence_cond_compressed_indices})
            elif self.dit.sequence_cond_mode == "full":
                sequence_cond = self.encode_video_with_mask(input_condition_video_sketch, num_frames, height, width, input_condition_preserved_mask_sketch)
                extra_input.update({"sequence_cond": sequence_cond})
            else:
                raise ValueError(f"Invalid `sequence_cond_model`={self.dit.sequence_cond_mode} in the DIT model.")
            
        elif self.dit.use_channel_cond:
            sequence_cond = self.encode_video_with_mask(input_condition_video_sketch, num_frames, height, width, input_condition_preserved_mask_sketch)
            extra_input.update({"channel_cond": sequence_cond})
            
        self.load_models_to_device([])
        
        if sequence_cond_residual_scale != 1.0:
            extra_input.update({"sequence_cond_residual_scale": sequence_cond_residual_scale})

        # Denoise
        self.load_models_to_device(["dit"])
        with torch.amp.autocast(dtype=torch.bfloat16, device_type=torch.device(self.device).type):
            for progress_id, timestep in enumerate(progress_bar_cmd(self.scheduler.timesteps)):
                timestep = timestep.unsqueeze(0).to(dtype=torch.float32, device=self.device)
                _should_visualize_attention = visualize_attention and (progress_id == len(self.scheduler.timesteps) - 1)
                if _should_visualize_attention:
                    print(f"Visualizing attention maps (Step {progress_id + 1}/{len(self.scheduler.timesteps)}).")
                    propagate_visualize_attention_arg(self.dit, True)
        
                # Inference
                noise_pred_posi = self.dit(latents, timestep=timestep, **prompt_emb_posi, **image_emb, **extra_input)
                if isinstance(noise_pred_posi, tuple):
                    noise_pred_posi = noise_pred_posi[0]
                if cfg_scale != 1.0:
                    noise_pred_nega = self.dit(latents, timestep=timestep, **prompt_emb_nega, **image_emb, **extra_input)
                    if isinstance(noise_pred_nega, tuple):
                        noise_pred_nega = noise_pred_nega[0]
                    noise_pred = noise_pred_nega + cfg_scale * (noise_pred_posi - noise_pred_nega)
                else:
                    noise_pred = noise_pred_posi

                # Scheduler
                latents = self.scheduler.step(noise_pred, self.scheduler.timesteps[progress_id], latents)
                
                # If visualization is enabled, save the attention maps
                if _should_visualize_attention:
                    print("Saving attention maps...")
                    from util.model_util import save_attention_maps
                    save_attention_maps(self.dit, output_path, batch_idx, timestep.squeeze().cpu().numpy().item())
                    propagate_visualize_attention_arg(self.dit, False)

        # Decode
        self.load_models_to_device(['vae'])
        frames = self.decode_video(latents, **tiler_kwargs)
        self.load_models_to_device([])

        return frames