Spaces:
Running
on
Zero
Running
on
Zero
File size: 27,496 Bytes
00274d1 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 |
from diffsynth import ModelManager
from diffsynth.pipelines.base import BasePipeline
from diffsynth.vram_management import enable_vram_management, AutoWrappedModule, AutoWrappedLinear
from model.dit import WanModel
from model.text_encoder import WanTextEncoder
from model.vae import WanVideoVAE
from model.image_encoder import WanImageEncoder
from model.prompter import WanPrompter
from scheduler.flow_match import FlowMatchScheduler
import torch, os
from einops import rearrange, repeat
import numpy as np
import PIL.Image
from tqdm import tqdm
from safetensors import safe_open
from model.text_encoder import T5RelativeEmbedding, T5LayerNorm
from model.dit import WanLayerNorm, WanRMSNorm, WanSelfAttention
from model.vae import RMS_norm, CausalConv3d, Upsample
def binary_tensor_to_indices(tensor):
assert tensor.dim() == 2, "Input tensor must be in [b, t]"
indices = [(row == 1).nonzero(as_tuple=True)[0] for row in tensor]
return indices
def propagate_visualize_attention_arg(model, visualize_attention=False):
"""
Recursively set the visualize_attention parameter to True for all WanSelfAttention modules
Only for inference/test mode
"""
for name, module in model.named_modules():
if isinstance(module, WanSelfAttention):
if "blocks.0.self_attn" in name or "blocks.19.self_attn" in name or "blocks.39.self_attn" in name:
print(f"Set `visualize_attention` to {visualize_attention} for {name}")
module.visualize_attention = visualize_attention
class WanVideoPipeline(BasePipeline):
def __init__(self, device="cuda", torch_dtype=torch.float16, tokenizer_path=None):
super().__init__(device=device, torch_dtype=torch_dtype)
self.scheduler = FlowMatchScheduler(shift=5, sigma_min=0.0, extra_one_step=True)
self.prompter = WanPrompter(tokenizer_path=tokenizer_path)
self.text_encoder: WanTextEncoder = None
self.image_encoder: WanImageEncoder = None
self.dit: WanModel = None
self.vae: WanVideoVAE = None
self.model_names = ['text_encoder', 'dit', 'vae']
self.height_division_factor = 16
self.width_division_factor = 16
def enable_vram_management(self, num_persistent_param_in_dit=None):
dtype = next(iter(self.text_encoder.parameters())).dtype
enable_vram_management(
self.text_encoder,
module_map = {
torch.nn.Linear: AutoWrappedLinear,
torch.nn.Embedding: AutoWrappedModule,
T5RelativeEmbedding: AutoWrappedModule,
T5LayerNorm: AutoWrappedModule,
},
module_config = dict(
offload_dtype=dtype,
offload_device="cpu",
onload_dtype=dtype,
onload_device="cpu",
computation_dtype=self.torch_dtype,
computation_device=self.device,
),
)
dtype = next(iter(self.dit.parameters())).dtype
enable_vram_management(
self.dit,
module_map = {
torch.nn.Linear: AutoWrappedLinear,
torch.nn.Conv3d: AutoWrappedModule,
torch.nn.LayerNorm: AutoWrappedModule,
WanLayerNorm: AutoWrappedModule,
WanRMSNorm: AutoWrappedModule,
},
module_config = dict(
offload_dtype=dtype,
offload_device="cpu",
onload_dtype=dtype,
onload_device=self.device,
computation_dtype=self.torch_dtype,
computation_device=self.device,
),
max_num_param=num_persistent_param_in_dit,
overflow_module_config = dict(
offload_dtype=dtype,
offload_device="cpu",
onload_dtype=dtype,
onload_device="cpu",
computation_dtype=self.torch_dtype,
computation_device=self.device,
),
)
dtype = next(iter(self.vae.parameters())).dtype
enable_vram_management(
self.vae,
module_map = {
torch.nn.Linear: AutoWrappedLinear,
torch.nn.Conv2d: AutoWrappedModule,
RMS_norm: AutoWrappedModule,
CausalConv3d: AutoWrappedModule,
Upsample: AutoWrappedModule,
torch.nn.SiLU: AutoWrappedModule,
torch.nn.Dropout: AutoWrappedModule,
},
module_config = dict(
offload_dtype=dtype,
offload_device="cpu",
onload_dtype=dtype,
onload_device=self.device,
computation_dtype=self.torch_dtype,
computation_device=self.device,
),
)
if self.image_encoder is not None:
dtype = next(iter(self.image_encoder.parameters())).dtype
enable_vram_management(
self.image_encoder,
module_map = {
torch.nn.Linear: AutoWrappedLinear,
torch.nn.Conv2d: AutoWrappedModule,
torch.nn.LayerNorm: AutoWrappedModule,
},
module_config = dict(
offload_dtype=dtype,
offload_device="cpu",
onload_dtype=dtype,
onload_device="cpu",
computation_dtype=self.torch_dtype,
computation_device=self.device,
),
)
self.enable_cpu_offload()
def fetch_models_from_model_manager(self, model_manager: ModelManager):
text_encoder_model_and_path = model_manager.fetch_model("wan_video_text_encoder", require_model_path=True)
if text_encoder_model_and_path is not None:
self.text_encoder, tokenizer_path = text_encoder_model_and_path
self.prompter.fetch_models(self.text_encoder)
self.prompter.fetch_tokenizer(os.path.join(os.path.dirname(tokenizer_path), "google/umt5-xxl"))
self.dit = model_manager.fetch_model("wan_video_dit")
self.vae = model_manager.fetch_model("wan_video_vae")
self.image_encoder = model_manager.fetch_model("wan_video_image_encoder")
def _init_component_from_checkpoint_path(self, model_cls, state_dict_path, strict=True, config_dict=None):
config = {}
state_dict = self._load_state_dict(state_dict_path)
if hasattr(model_cls, "state_dict_converter"):
state_dict_converter = model_cls.state_dict_converter()
state_dict = state_dict_converter.from_civitai(state_dict)
if isinstance(state_dict, tuple):
state_dict, config = state_dict
config.update(config_dict or {})
model = model_cls(**config)
if "use_local_lora" in config_dict or "use_dera" in config_dict:
strict = False
missing_keys, unexpected_keys = model.load_state_dict(state_dict, strict=strict)
print(f"Missing keys: {missing_keys}")
print(f"Unexpected keys: {unexpected_keys}")
return model
def _load_state_dict(self, state_dict_paths):
if isinstance(state_dict_paths, str):
state_dict_paths = [state_dict_paths]
state_dict = {}
for state_dict_path in tqdm(state_dict_paths, desc="Reading file(s) from disk"):
state_dict.update(self._load_single_file(state_dict_path))
return state_dict
def _load_single_file(self, file_path):
if file_path.endswith(".safetensors"):
return self._load_state_dict_from_safetensors(file_path)
else:
return torch.load(file_path, map_location='cpu')
def _load_state_dict_from_safetensors(self, file_path, torch_dtype=None):
state_dict = {}
with safe_open(file_path, framework="pt", device="cpu") as f:
for k in f.keys():
state_dict[k] = f.get_tensor(k)
if torch_dtype is not None:
state_dict[k] = state_dict[k].to(torch_dtype)
return state_dict
def initialize_dummy_dit(self, config):
print("Initializing a dummy DIT model.")
self.dit = WanModel(**config)
print("Dummy DIT model is initialized.")
def fetch_models_from_checkpoints(self, path_dict, config_dict=None):
default_config = {"text_encoder": {}, "dit": {}, "vae": {}, "image_encoder": {}}
config_dict = {**default_config, **(config_dict or {})}
components = {
"text_encoder": WanTextEncoder,
"dit": WanModel,
"vae": WanVideoVAE,
"image_encoder": WanImageEncoder
}
for name, model_cls in components.items():
if name not in path_dict:
print(f"Component {name} is not found in the checkpoint path dict. Skipping.")
continue
path = path_dict[name]
config = config_dict.get(name, {})
print(f"Loading {name} from {path} with config {config}.")
setattr(self, name, self._init_component_from_checkpoint_path(model_cls, path, config_dict=config))
print(f"Initialized {name} from checkpoint.")
if "text_encoder" in path_dict:
self.prompter.fetch_models(self.text_encoder)
self.prompter.fetch_tokenizer(os.path.join(os.path.dirname(path_dict["text_encoder"]), "google/umt5-xxl"))
print("Initialized prompter from checkpoint.")
print("All components are initialized from checkpoints.")
@staticmethod
def from_model_manager(model_manager: ModelManager, torch_dtype=None, device=None):
if device is None: device = model_manager.device
if torch_dtype is None: torch_dtype = model_manager.torch_dtype
pipe = WanVideoPipeline(device=device, torch_dtype=torch_dtype)
pipe.fetch_models_from_model_manager(model_manager)
return pipe
def denoising_model(self):
return self.dit
def encode_prompt(self, prompt, positive=True):
prompt_emb = self.prompter.encode_prompt(prompt, positive=positive)
return {"context": prompt_emb}
def encode_image(self, image, num_frames, height, width):
with torch.amp.autocast(dtype=torch.bfloat16, device_type=torch.device(self.device).type):
image = self.preprocess_image(image.resize((width, height))).to(self.device)
clip_context = self.image_encoder.encode_image([image])
msk = torch.ones(1, num_frames, height//8, width//8, device=self.device)
msk[:, 1:] = 0
msk = torch.concat([torch.repeat_interleave(msk[:, 0:1], repeats=4, dim=1), msk[:, 1:]], dim=1)
msk = msk.view(1, msk.shape[1] // 4, 4, height//8, width//8)
msk = msk.transpose(1, 2)[0]
y = self.vae.encode([torch.concat([image.transpose(0, 1), torch.zeros(3, num_frames-1, height, width).to(image.device)], dim=1)], device=self.device)[0]
y = torch.concat([msk, y])
return {"clip_fea": clip_context, "y": [y]}
def check_and_fix_image_or_video_tensor_input(self, _tensor):
assert isinstance(_tensor, torch.Tensor), "Input must be a tensor."
if _tensor.max() <= 255 and _tensor.max() > 1.0:
_tensor = _tensor.to(self.device) / 127.5 - 1
print("Input tensor is converted from [0, 255] to [-1, 1].")
elif _tensor.min() >= 0 and _tensor.max() <= 1:
_tensor = _tensor.to(self.device) * 2 - 1
print("Input tensor is converted from [0, 1] to [-1, 1].")
return _tensor
def encode_video_with_mask(self, video, num_frames, height, width, condition_preserved_mask):
with torch.amp.autocast(dtype=torch.bfloat16, device_type=torch.device(self.device).type):
video = video.to(self.device)
y = self.vae.encode(video, device=self.device)
msk = condition_preserved_mask
assert msk is not None, "The mask must be provided for the masked video input."
assert msk.dim() == 2, "The mask must be a 2D tensor in [b, t]."
assert msk.shape[0] == video.shape[0], "The batch size of the mask must be the same as the input video."
assert msk.shape[1] == num_frames, "The number of frames in the mask must be the same as the input video."
msk = msk.to(self.device)
msk = msk.unsqueeze(-1).unsqueeze(-1)
msk = repeat(msk, 'b t 1 1 -> b t h w', h=height//8, w=width//8)
msk = torch.concat([torch.repeat_interleave(msk[:, 0:1], repeats=4, dim=1), msk[:, 1:]], dim=1)
msk = msk.view(video.shape[0], msk.shape[1] // 4, 4, height//8, width//8) # b, t, c, h, w
msk = msk.transpose(1, 2) # b, c, t, h, w
y = torch.concat([msk, y], dim=1)
return y
def encode_video_with_mask_sparse(self, video, height, width, condition_preserved_mask, sketch_local_mask=None):
with torch.amp.autocast(dtype=torch.bfloat16, device_type=torch.device(self.device).type):
batch_size = video.shape[0]
cond_indices = binary_tensor_to_indices(condition_preserved_mask)
sequence_cond_compressed_indices = [(cond_index + 3) // 4 for cond_index in cond_indices]
video = video.to(self.device)
video_latent = self.vae.encode(video, device=self.device)
video_latent = video_latent[:, :, sequence_cond_compressed_indices[0], :, :]
msk = condition_preserved_mask.to(self.device)
msk = msk.unsqueeze(-1).unsqueeze(-1) # b, t, 1, 1
msk = repeat(msk, 'b t 1 1 -> b t h w', h=height//8, w=width//8)
msk = torch.concat([torch.repeat_interleave(msk[:, 0:1], repeats=4, dim=1), msk[:, 1:]], dim=1)
msk = msk.view(batch_size, msk.shape[1] // 4, 4, height//8, width//8) # b, t, 4, h//8, w//8
msk = msk.transpose(1, 2) # b, 4, t, h//8, w//8
msk = msk[:, :, sequence_cond_compressed_indices[0], :, :]
if sketch_local_mask is not None:
sketch_local_mask = sketch_local_mask.to(self.device)
if sketch_local_mask.shape[-2:] != (height//8, width//8):
sk_batch_t = sketch_local_mask.shape[0] * sketch_local_mask.shape[2]
sketch_local_mask_reshaped = sketch_local_mask.reshape(sk_batch_t, 1, sketch_local_mask.shape[3], sketch_local_mask.shape[4])
sketch_local_mask_resized = torch.nn.functional.interpolate(
sketch_local_mask_reshaped,
size=(height//8, width//8),
mode='nearest'
)
sketch_local_mask_resized = sketch_local_mask_resized.reshape(
sketch_local_mask.shape[0],
sketch_local_mask.shape[1],
sketch_local_mask.shape[2],
height//8, width//8
)
else:
sketch_local_mask_resized = sketch_local_mask
sketch_mask = sketch_local_mask_resized
sketch_mask = torch.concat([torch.repeat_interleave(sketch_mask[:, :, 0:1], repeats=4, dim=2), sketch_mask[:, :, 1:]], dim=2)
sketch_mask = sketch_mask.view(batch_size, sketch_mask.shape[1], sketch_mask.shape[2] // 4, 4, height//8, width//8)
sketch_mask = sketch_mask.permute(0, 1, 3, 2, 4, 5) # [b, 1, 4, t//4, h//8, w//8]
sketch_mask = sketch_mask.view(batch_size, 4, sketch_mask.shape[3], height//8, width//8) # [b, 4, t//4, h//8, w//8]
sketch_mask = sketch_mask[:, :, sequence_cond_compressed_indices[0], :, :] # [b, 4, len(indices), h//8, w//8]
combined_latent = torch.cat([msk, video_latent, sketch_mask], dim=1)
else:
combined_latent = torch.concat([msk, video_latent], dim=1)
return combined_latent, sequence_cond_compressed_indices # b, c=(4+16+4=24), t, h, w when sketch_local_mask is provided
def encode_image_or_masked_video(self, image_or_masked_video, num_frames, height, width, condition_preserved_mask=None):
with torch.amp.autocast(dtype=torch.bfloat16, device_type=torch.device(self.device).type):
batch_size = image_or_masked_video.shape[0]
if isinstance(image_or_masked_video, PIL.Image.Image) or (isinstance(image_or_masked_video, torch.Tensor) and image_or_masked_video.dim() <= 4):
if isinstance(image_or_masked_video, PIL.Image.Image):
image_or_masked_video = self.preprocess_image(image_or_masked_video.resize((width, height))).to(self.device)
else:
if image_or_masked_video.dim() == 3:
image_or_masked_video = image_or_masked_video.unsqueeze(0) # b=1, c, h, w
image_or_masked_video = image_or_masked_video.to(self.device)
y = self.vae.encode([torch.concat([image_or_masked_video.transpose(0, 1), torch.zeros(3, num_frames-1, height, width).to(image_or_masked_video.device)], dim=1)], device=self.device)
msk_idx_to_be_zero = range(1, num_frames)
clip_context = self.image_encoder.encode_image(image_or_masked_video.unsqueeze(1)) # need to be [b, 1, c, h, w]
msk = torch.ones(batch_size, num_frames, height//8, width//8, device=self.device)
msk[:, msk_idx_to_be_zero] = 0
msk = torch.concat([torch.repeat_interleave(msk[:, 0:1], repeats=4, dim=1), msk[:, 1:]], dim=1)
msk = msk.view(batch_size, msk.shape[1] // 4, 4, height//8, width//8)
msk = msk.transpose(1, 2)
elif isinstance(image_or_masked_video, torch.Tensor) and image_or_masked_video.dim() == 5:
image_or_masked_video = image_or_masked_video.to(self.device)
first_image = image_or_masked_video[:, :, 0, :, :].unsqueeze(1)
clip_context = self.image_encoder.encode_image(first_image)
y = self.vae.encode(image_or_masked_video, device=self.device)
msk = condition_preserved_mask # b, t
assert msk is not None, "The mask must be provided for the masked video input."
assert msk.dim() == 2, "The mask must be a 2D tensor in [b, t]."
assert msk.shape[0] == batch_size, "The batch size of the mask must be the same as the input video."
assert msk.shape[1] == num_frames, "The number of frames in the mask must be the same as the input video."
msk = msk.to(self.device)
msk = msk.unsqueeze(-1).unsqueeze(-1) # b, t, 1, 1
msk = repeat(msk, 'b t 1 1 -> b t h w', h=height//8, w=width//8)
msk = torch.concat([torch.repeat_interleave(msk[:, 0:1], repeats=4, dim=1), msk[:, 1:]], dim=1)
msk = msk.view(batch_size, msk.shape[1] // 4, 4, height//8, width//8) # b, t, 4, h//8, w//8
msk = msk.transpose(1, 2) # b, 4, t, h//8, w//8
else:
raise ValueError("Input must be an image (PIL/Tensor in [b, c, h, w]) or a masked video (Tensor in [b, c, t, h, w]).")
y = torch.concat([msk, y], dim=1)
return {"clip_fea": clip_context, "y": y}
def tensor2video(self, frames):
frames = rearrange(frames, "C T H W -> T H W C")
frames = ((frames.float() + 1) * 127.5).clip(0, 255).cpu().numpy().astype(np.uint8)
frames = [PIL.Image.fromarray(frame) for frame in frames]
return frames
def prepare_extra_input(self, latents=None):
return {"seq_len": latents.shape[2] * latents.shape[3] * latents.shape[4] // 4}
def encode_video(self, input_video, tiled=True, tile_size=(34, 34), tile_stride=(18, 16)):
with torch.amp.autocast(dtype=torch.bfloat16, device_type=torch.device(self.device).type):
latents = self.vae.encode(input_video, device=self.device, tiled=tiled, tile_size=tile_size, tile_stride=tile_stride)
return latents
def decode_video(self, latents, tiled=True, tile_size=(34, 34), tile_stride=(18, 16)):
with torch.amp.autocast(dtype=torch.bfloat16, device_type=torch.device(self.device).type):
frames = self.vae.decode(latents, device=self.device, tiled=tiled, tile_size=tile_size, tile_stride=tile_stride)
return frames
@torch.no_grad()
def __call__(
self,
prompt,
negative_prompt="",
input_image=None,
input_video=None,
denoising_strength=1.0,
seed=None,
rand_device="cpu",
height=480,
width=832,
num_frames=81,
cfg_scale=5.0,
num_inference_steps=50,
sigma_shift=5.0,
tiled=True,
tile_size=(30, 52),
tile_stride=(15, 26),
progress_bar_cmd=tqdm,
# progress_bar_st=None,
input_condition_video=None,
input_condition_preserved_mask=None,
input_condition_video_sketch=None,
input_condition_preserved_mask_sketch=None,
sketch_local_mask=None,
visualize_attention=False,
output_path=None,
batch_idx=None,
sequence_cond_residual_scale=1.0,
):
height, width = self.check_resize_height_width(height, width)
if num_frames % 4 != 1:
num_frames = (num_frames + 2) // 4 * 4 + 1
print(f"Only `num_frames % 4 != 1` is acceptable. We round it up to {num_frames}.")
tiler_kwargs = {"tiled": tiled, "tile_size": tile_size, "tile_stride": tile_stride}
self.scheduler.set_timesteps(num_inference_steps, denoising_strength, shift=sigma_shift)
noise = self.generate_noise((1, 16, (num_frames - 1) // 4 + 1, height//8, width//8), seed=seed, device=rand_device, dtype=torch.float32).to(self.device)
if input_video is not None:
self.load_models_to_device(['vae'])
input_video = self.preprocess_images(input_video)
input_video = torch.stack(input_video, dim=2)
latents = self.encode_video(input_video, **tiler_kwargs).to(dtype=noise.dtype, device=noise.device)
latents = self.scheduler.add_noise(latents, noise, timestep=self.scheduler.timesteps[0])
else:
latents = noise
self.load_models_to_device(["text_encoder"])
prompt_emb_posi = self.encode_prompt(prompt, positive=True)
if cfg_scale != 1.0:
prompt_emb_nega = self.encode_prompt(negative_prompt, positive=False)
self.load_models_to_device(["image_encoder", "vae"])
if input_image is not None and self.image_encoder is not None:
image_emb = self.encode_image(input_image, num_frames, height, width)
elif input_condition_video is not None and self.image_encoder is not None:
assert input_condition_preserved_mask is not None, "`input_condition_preserved_mask` must not be None when `input_condition_video` is given."
image_emb = self.encode_image_or_masked_video(input_condition_video, num_frames, height, width, input_condition_preserved_mask)
else:
image_emb = {}
# Extra input
extra_input = self.prepare_extra_input(latents)
if self.dit.use_sequence_cond:
assert input_condition_video_sketch is not None, "`input_condition_video_sketch` must not be None when `use_sequence_cond` is True."
assert input_condition_preserved_mask_sketch is not None, "`input_condition_preserved_mask_sketch` must not be None when `input_condition_video_sketch` is given."
if self.dit.sequence_cond_mode == "sparse":
sequence_cond, sequence_cond_compressed_indices = self.encode_video_with_mask_sparse(input_condition_video_sketch, height, width, input_condition_preserved_mask_sketch, sketch_local_mask)
extra_input.update({"sequence_cond": sequence_cond,
"sequence_cond_compressed_indices": sequence_cond_compressed_indices})
elif self.dit.sequence_cond_mode == "full":
sequence_cond = self.encode_video_with_mask(input_condition_video_sketch, num_frames, height, width, input_condition_preserved_mask_sketch)
extra_input.update({"sequence_cond": sequence_cond})
else:
raise ValueError(f"Invalid `sequence_cond_model`={self.dit.sequence_cond_mode} in the DIT model.")
elif self.dit.use_channel_cond:
sequence_cond = self.encode_video_with_mask(input_condition_video_sketch, num_frames, height, width, input_condition_preserved_mask_sketch)
extra_input.update({"channel_cond": sequence_cond})
self.load_models_to_device([])
if sequence_cond_residual_scale != 1.0:
extra_input.update({"sequence_cond_residual_scale": sequence_cond_residual_scale})
# Denoise
self.load_models_to_device(["dit"])
with torch.amp.autocast(dtype=torch.bfloat16, device_type=torch.device(self.device).type):
for progress_id, timestep in enumerate(progress_bar_cmd(self.scheduler.timesteps)):
timestep = timestep.unsqueeze(0).to(dtype=torch.float32, device=self.device)
_should_visualize_attention = visualize_attention and (progress_id == len(self.scheduler.timesteps) - 1)
if _should_visualize_attention:
print(f"Visualizing attention maps (Step {progress_id + 1}/{len(self.scheduler.timesteps)}).")
propagate_visualize_attention_arg(self.dit, True)
# Inference
noise_pred_posi = self.dit(latents, timestep=timestep, **prompt_emb_posi, **image_emb, **extra_input)
if isinstance(noise_pred_posi, tuple):
noise_pred_posi = noise_pred_posi[0]
if cfg_scale != 1.0:
noise_pred_nega = self.dit(latents, timestep=timestep, **prompt_emb_nega, **image_emb, **extra_input)
if isinstance(noise_pred_nega, tuple):
noise_pred_nega = noise_pred_nega[0]
noise_pred = noise_pred_nega + cfg_scale * (noise_pred_posi - noise_pred_nega)
else:
noise_pred = noise_pred_posi
# Scheduler
latents = self.scheduler.step(noise_pred, self.scheduler.timesteps[progress_id], latents)
# If visualization is enabled, save the attention maps
if _should_visualize_attention:
print("Saving attention maps...")
from util.model_util import save_attention_maps
save_attention_maps(self.dit, output_path, batch_idx, timestep.squeeze().cpu().numpy().item())
propagate_visualize_attention_arg(self.dit, False)
# Decode
self.load_models_to_device(['vae'])
frames = self.decode_video(latents, **tiler_kwargs)
self.load_models_to_device([])
return frames |