TensoraCO soumyaprabhamaiti commited on
Commit
3b835fc
·
0 Parent(s):

Duplicate from soumyaprabhamaiti/image_segmentation_web_app

Browse files

Co-authored-by: soumya_prabha_maiti <[email protected]>

.gitattributes ADDED
@@ -0,0 +1,35 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ *.7z filter=lfs diff=lfs merge=lfs -text
2
+ *.arrow filter=lfs diff=lfs merge=lfs -text
3
+ *.bin filter=lfs diff=lfs merge=lfs -text
4
+ *.bz2 filter=lfs diff=lfs merge=lfs -text
5
+ *.ckpt filter=lfs diff=lfs merge=lfs -text
6
+ *.ftz filter=lfs diff=lfs merge=lfs -text
7
+ *.gz filter=lfs diff=lfs merge=lfs -text
8
+ *.h5 filter=lfs diff=lfs merge=lfs -text
9
+ *.joblib filter=lfs diff=lfs merge=lfs -text
10
+ *.lfs.* filter=lfs diff=lfs merge=lfs -text
11
+ *.mlmodel filter=lfs diff=lfs merge=lfs -text
12
+ *.model filter=lfs diff=lfs merge=lfs -text
13
+ *.msgpack filter=lfs diff=lfs merge=lfs -text
14
+ *.npy filter=lfs diff=lfs merge=lfs -text
15
+ *.npz filter=lfs diff=lfs merge=lfs -text
16
+ *.onnx filter=lfs diff=lfs merge=lfs -text
17
+ *.ot filter=lfs diff=lfs merge=lfs -text
18
+ *.parquet filter=lfs diff=lfs merge=lfs -text
19
+ *.pb filter=lfs diff=lfs merge=lfs -text
20
+ *.pickle filter=lfs diff=lfs merge=lfs -text
21
+ *.pkl filter=lfs diff=lfs merge=lfs -text
22
+ *.pt filter=lfs diff=lfs merge=lfs -text
23
+ *.pth filter=lfs diff=lfs merge=lfs -text
24
+ *.rar filter=lfs diff=lfs merge=lfs -text
25
+ *.safetensors filter=lfs diff=lfs merge=lfs -text
26
+ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
27
+ *.tar.* filter=lfs diff=lfs merge=lfs -text
28
+ *.tar filter=lfs diff=lfs merge=lfs -text
29
+ *.tflite filter=lfs diff=lfs merge=lfs -text
30
+ *.tgz filter=lfs diff=lfs merge=lfs -text
31
+ *.wasm filter=lfs diff=lfs merge=lfs -text
32
+ *.xz filter=lfs diff=lfs merge=lfs -text
33
+ *.zip filter=lfs diff=lfs merge=lfs -text
34
+ *.zst filter=lfs diff=lfs merge=lfs -text
35
+ *tfevents* filter=lfs diff=lfs merge=lfs -text
.github/workflows/check_file_size.yml ADDED
@@ -0,0 +1,16 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ name: Check file size
2
+ on: # or directly `on: [push]` to run the action on every push on any branch
3
+ pull_request:
4
+ branches: [main]
5
+
6
+ # to run this workflow manually from the Actions tab
7
+ workflow_dispatch:
8
+
9
+ jobs:
10
+ check-file-size:
11
+ runs-on: ubuntu-latest
12
+ steps:
13
+ - name: Check large files
14
+ uses: ActionsDesk/[email protected]
15
+ with:
16
+ filesizelimit: 10485760 # this is 10MB so we can sync to HF Spaces
.github/workflows/sync_to_HF_hub.yml ADDED
@@ -0,0 +1,20 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ name: Sync to Hugging Face hub
2
+ on:
3
+ push:
4
+ branches: [main]
5
+
6
+ # to run this workflow manually from the Actions tab
7
+ workflow_dispatch:
8
+
9
+ jobs:
10
+ sync-to-hub:
11
+ runs-on: ubuntu-latest
12
+ steps:
13
+ - uses: actions/checkout@v3
14
+ with:
15
+ fetch-depth: 0
16
+ lfs: true
17
+ - name: Push to hub
18
+ env:
19
+ HF: ${{ secrets.HF }}
20
+ run: git push --force https://soumyaprabhamaiti:[email protected]/spaces/soumyaprabhamaiti/image_segmentation_web_app main
.gitignore ADDED
@@ -0,0 +1,163 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Byte-compiled / optimized / DLL files
2
+ __pycache__/
3
+ *.py[cod]
4
+ *$py.class
5
+
6
+ # C extensions
7
+ *.so
8
+
9
+ # Distribution / packaging
10
+ .Python
11
+ build/
12
+ develop-eggs/
13
+ dist/
14
+ downloads/
15
+ eggs/
16
+ .eggs/
17
+ lib/
18
+ lib64/
19
+ parts/
20
+ sdist/
21
+ var/
22
+ wheels/
23
+ share/python-wheels/
24
+ *.egg-info/
25
+ .installed.cfg
26
+ *.egg
27
+ MANIFEST
28
+
29
+ # PyInstaller
30
+ # Usually these files are written by a python script from a template
31
+ # before PyInstaller builds the exe, so as to inject date/other infos into it.
32
+ *.manifest
33
+ *.spec
34
+
35
+ # Installer logs
36
+ pip-log.txt
37
+ pip-delete-this-directory.txt
38
+
39
+ # Unit test / coverage reports
40
+ htmlcov/
41
+ .tox/
42
+ .nox/
43
+ .coverage
44
+ .coverage.*
45
+ .cache
46
+ nosetests.xml
47
+ coverage.xml
48
+ *.cover
49
+ *.py,cover
50
+ .hypothesis/
51
+ .pytest_cache/
52
+ cover/
53
+
54
+ # Translations
55
+ *.mo
56
+ *.pot
57
+
58
+ # Django stuff:
59
+ *.log
60
+ local_settings.py
61
+ db.sqlite3
62
+ db.sqlite3-journal
63
+
64
+ # Flask stuff:
65
+ instance/
66
+ .webassets-cache
67
+
68
+ # Scrapy stuff:
69
+ .scrapy
70
+
71
+ # Sphinx documentation
72
+ docs/_build/
73
+
74
+ # PyBuilder
75
+ .pybuilder/
76
+ target/
77
+
78
+ # Jupyter Notebook
79
+ .ipynb_checkpoints
80
+
81
+ # IPython
82
+ profile_default/
83
+ ipython_config.py
84
+
85
+ # pyenv
86
+ # For a library or package, you might want to ignore these files since the code is
87
+ # intended to run in multiple environments; otherwise, check them in:
88
+ # .python-version
89
+
90
+ # pipenv
91
+ # According to pypa/pipenv#598, it is recommended to include Pipfile.lock in version control.
92
+ # However, in case of collaboration, if having platform-specific dependencies or dependencies
93
+ # having no cross-platform support, pipenv may install dependencies that don't work, or not
94
+ # install all needed dependencies.
95
+ #Pipfile.lock
96
+
97
+ # poetry
98
+ # Similar to Pipfile.lock, it is generally recommended to include poetry.lock in version control.
99
+ # This is especially recommended for binary packages to ensure reproducibility, and is more
100
+ # commonly ignored for libraries.
101
+ # https://python-poetry.org/docs/basic-usage/#commit-your-poetrylock-file-to-version-control
102
+ #poetry.lock
103
+
104
+ # pdm
105
+ # Similar to Pipfile.lock, it is generally recommended to include pdm.lock in version control.
106
+ #pdm.lock
107
+ # pdm stores project-wide configurations in .pdm.toml, but it is recommended to not include it
108
+ # in version control.
109
+ # https://pdm.fming.dev/#use-with-ide
110
+ .pdm.toml
111
+
112
+ # PEP 582; used by e.g. github.com/David-OConnor/pyflow and github.com/pdm-project/pdm
113
+ __pypackages__/
114
+
115
+ # Celery stuff
116
+ celerybeat-schedule
117
+ celerybeat.pid
118
+
119
+ # SageMath parsed files
120
+ *.sage.py
121
+
122
+ # Environments
123
+ .env
124
+ .venv
125
+ env/
126
+ venv/
127
+ ENV/
128
+ env.bak/
129
+ venv.bak/
130
+
131
+ # Spyder project settings
132
+ .spyderproject
133
+ .spyproject
134
+
135
+ # Rope project settings
136
+ .ropeproject
137
+
138
+ # mkdocs documentation
139
+ /site
140
+
141
+ # mypy
142
+ .mypy_cache/
143
+ .dmypy.json
144
+ dmypy.json
145
+
146
+ # Pyre type checker
147
+ .pyre/
148
+
149
+ # pytype static type analyzer
150
+ .pytype/
151
+
152
+ # Cython debug symbols
153
+ cython_debug/
154
+
155
+ # PyCharm
156
+ # JetBrains specific template is maintained in a separate JetBrains.gitignore that can
157
+ # be found at https://github.com/github/gitignore/blob/main/Global/JetBrains.gitignore
158
+ # and can be added to the global gitignore or merged into this file. For a more nuclear
159
+ # option (not recommended) you can uncomment the following to ignore the entire idea folder.
160
+ #.idea/
161
+
162
+ # Additional ignores
163
+ flagged/
LICENSE ADDED
@@ -0,0 +1,21 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ MIT License
2
+
3
+ Copyright (c) 2023 Soumya Prabha Maiti
4
+
5
+ Permission is hereby granted, free of charge, to any person obtaining a copy
6
+ of this software and associated documentation files (the "Software"), to deal
7
+ in the Software without restriction, including without limitation the rights
8
+ to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
9
+ copies of the Software, and to permit persons to whom the Software is
10
+ furnished to do so, subject to the following conditions:
11
+
12
+ The above copyright notice and this permission notice shall be included in all
13
+ copies or substantial portions of the Software.
14
+
15
+ THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16
+ IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17
+ FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
18
+ AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19
+ LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
20
+ OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
21
+ SOFTWARE.
README.md ADDED
@@ -0,0 +1,186 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ title: Image Segmentation
3
+ emoji: 🌖
4
+ colorFrom: red
5
+ colorTo: gray
6
+ sdk: gradio
7
+ sdk_version: 3.35.2
8
+ app_file: app.py
9
+ pinned: false
10
+ license: mit
11
+ duplicated_from: soumyaprabhamaiti/image_segmentation_web_app
12
+ ---
13
+
14
+ # Image Segmentation Web App
15
+ [![Hugging Face Spaces](https://img.shields.io/badge/%F0%9F%A4%97%20Hugging%20Face-Spaces-blue)](https://huggingface.co/spaces/soumyaprabhamaiti/image_segmentation_web_app)
16
+ ![Views](https://img.shields.io/endpoint?url=https%3A%2F%2Fhits.dwyl.com%2Fsoumya-prabha-maiti%2Fimage-segmentation-web-app.json%3Fcolor%3Demerald)
17
+
18
+ This is a web app that segments the image of a pet animal into three regions - foreground (pet), background and boundary. It uses a [U-Net](https://arxiv.org/abs/1505.04597) model trained on [Oxford-IIIT Pet Dataset](https://www.robots.ox.ac.uk/~vgg/data/pets/) and is deployed using [Gradio](https://gradio.app/).
19
+
20
+ ## Demo
21
+
22
+ The deployed version of this project can be accessed at [Hugging Face Spaces](https://huggingface.co/spaces/soumyaprabhamaiti/image_segmentation_web_app). Segmentation on a sample image is shown below:
23
+ ![Segmentation on a sample image](readme_images/image.png)
24
+
25
+ ## Installing Locally
26
+
27
+ To run this project locally, please follow these steps:
28
+
29
+ 1. Clone the repository:
30
+
31
+ ```
32
+ git clone https://github.com/soumya-prabha-maiti/image-segmentation-web-app
33
+ ```
34
+
35
+ 2. Navigate to the project folder:
36
+
37
+ ```
38
+ cd image-segmentation-web-app
39
+ ```
40
+
41
+ 3. Install the required libraries:
42
+
43
+ ```
44
+ pip install -r requirements.txt
45
+ ```
46
+
47
+ 4. Run the application:
48
+
49
+ ```
50
+ python app.py
51
+ ```
52
+
53
+ 5. Access the application in your web browser at the specified port.
54
+
55
+ ## Dataset
56
+
57
+ The [Oxford-IIIT Pet Dataset](https://www.robots.ox.ac.uk/~vgg/data/pets/) contains 37 categories of pets with roughly 200 images for each category. The images have a large variation in scale, pose and lighting. All images have an associated ground truth annotation of breed, head ROI, and pixel level trimap segmentation. Here the dataset was obtained using [TensorFlow Datasets](https://www.tensorflow.org/datasets/catalog/oxford_iiit_pet).
58
+
59
+ ## Model Architecture
60
+
61
+ The segmentation model uses the UNET architecture. The basic architecture of the UNET model is shown below:
62
+ ![UNET Architecture](readme_images/unet.png)
63
+ The UNET model consists of an encoder and a decoder. The encoder is a series of convolutional layers that extract features from the input image. The decoder is a series of transposed convolutional layers that upsample the features to the original image size. Skip connections are used to connect the encoder and decoder layers. The skip connections concatenate the feature maps from the encoder to the corresponding feature maps in the decoder. This helps the decoder to recover the spatial information lost during the encoding process.
64
+
65
+ The detailed architecture of the UNET model used in this project is shown below:
66
+ ```
67
+ Model: "model"
68
+ __________________________________________________________________________________________________
69
+ Layer (type) Output Shape Param # Connected to
70
+ ==================================================================================================
71
+ input_1 (InputLayer) [(None, 256, 256, 3 0 []
72
+ )]
73
+
74
+ conv2d (Conv2D) (None, 256, 256, 16 448 ['input_1[0][0]']
75
+ )
76
+
77
+ conv2d_1 (Conv2D) (None, 256, 256, 16 2320 ['conv2d[0][0]']
78
+ )
79
+
80
+ max_pooling2d (MaxPooling2D) (None, 128, 128, 16 0 ['conv2d_1[0][0]']
81
+ )
82
+
83
+ dropout (Dropout) (None, 128, 128, 16 0 ['max_pooling2d[0][0]']
84
+ )
85
+
86
+ conv2d_2 (Conv2D) (None, 128, 128, 32 4640 ['dropout[0][0]']
87
+ )
88
+
89
+ conv2d_3 (Conv2D) (None, 128, 128, 32 9248 ['conv2d_2[0][0]']
90
+ )
91
+
92
+ max_pooling2d_1 (MaxPooling2D) (None, 64, 64, 32) 0 ['conv2d_3[0][0]']
93
+
94
+ dropout_1 (Dropout) (None, 64, 64, 32) 0 ['max_pooling2d_1[0][0]']
95
+
96
+ conv2d_4 (Conv2D) (None, 64, 64, 64) 18496 ['dropout_1[0][0]']
97
+
98
+ conv2d_5 (Conv2D) (None, 64, 64, 64) 36928 ['conv2d_4[0][0]']
99
+
100
+ max_pooling2d_2 (MaxPooling2D) (None, 32, 32, 64) 0 ['conv2d_5[0][0]']
101
+
102
+ dropout_2 (Dropout) (None, 32, 32, 64) 0 ['max_pooling2d_2[0][0]']
103
+
104
+ conv2d_6 (Conv2D) (None, 32, 32, 128) 73856 ['dropout_2[0][0]']
105
+
106
+ conv2d_7 (Conv2D) (None, 32, 32, 128) 147584 ['conv2d_6[0][0]']
107
+
108
+ max_pooling2d_3 (MaxPooling2D) (None, 16, 16, 128) 0 ['conv2d_7[0][0]']
109
+
110
+ dropout_3 (Dropout) (None, 16, 16, 128) 0 ['max_pooling2d_3[0][0]']
111
+
112
+ conv2d_8 (Conv2D) (None, 16, 16, 256) 295168 ['dropout_3[0][0]']
113
+
114
+ conv2d_9 (Conv2D) (None, 16, 16, 256) 590080 ['conv2d_8[0][0]']
115
+
116
+ conv2d_transpose (Conv2DTransp (None, 32, 32, 128) 295040 ['conv2d_9[0][0]']
117
+ ose)
118
+
119
+ concatenate (Concatenate) (None, 32, 32, 256) 0 ['conv2d_transpose[0][0]',
120
+ 'conv2d_7[0][0]']
121
+
122
+ dropout_4 (Dropout) (None, 32, 32, 256) 0 ['concatenate[0][0]']
123
+
124
+ conv2d_10 (Conv2D) (None, 32, 32, 128) 295040 ['dropout_4[0][0]']
125
+
126
+ conv2d_11 (Conv2D) (None, 32, 32, 128) 147584 ['conv2d_10[0][0]']
127
+
128
+ conv2d_transpose_1 (Conv2DTran (None, 64, 64, 64) 73792 ['conv2d_11[0][0]']
129
+ spose)
130
+
131
+ concatenate_1 (Concatenate) (None, 64, 64, 128) 0 ['conv2d_transpose_1[0][0]',
132
+ 'conv2d_5[0][0]']
133
+
134
+ dropout_5 (Dropout) (None, 64, 64, 128) 0 ['concatenate_1[0][0]']
135
+
136
+ conv2d_12 (Conv2D) (None, 64, 64, 64) 73792 ['dropout_5[0][0]']
137
+
138
+ conv2d_13 (Conv2D) (None, 64, 64, 64) 36928 ['conv2d_12[0][0]']
139
+
140
+ conv2d_transpose_2 (Conv2DTran (None, 128, 128, 32 18464 ['conv2d_13[0][0]']
141
+ spose) )
142
+
143
+ concatenate_2 (Concatenate) (None, 128, 128, 64 0 ['conv2d_transpose_2[0][0]',
144
+ ) 'conv2d_3[0][0]']
145
+
146
+ dropout_6 (Dropout) (None, 128, 128, 64 0 ['concatenate_2[0][0]']
147
+ )
148
+
149
+ conv2d_14 (Conv2D) (None, 128, 128, 32 18464 ['dropout_6[0][0]']
150
+ )
151
+
152
+ conv2d_15 (Conv2D) (None, 128, 128, 32 9248 ['conv2d_14[0][0]']
153
+ )
154
+
155
+ conv2d_transpose_3 (Conv2DTran (None, 256, 256, 16 4624 ['conv2d_15[0][0]']
156
+ spose) )
157
+
158
+ concatenate_3 (Concatenate) (None, 256, 256, 32 0 ['conv2d_transpose_3[0][0]',
159
+ ) 'conv2d_1[0][0]']
160
+
161
+ dropout_7 (Dropout) (None, 256, 256, 32 0 ['concatenate_3[0][0]']
162
+ )
163
+
164
+ conv2d_16 (Conv2D) (None, 256, 256, 16 4624 ['dropout_7[0][0]']
165
+ )
166
+
167
+ conv2d_17 (Conv2D) (None, 256, 256, 16 2320 ['conv2d_16[0][0]']
168
+ )
169
+
170
+ conv2d_18 (Conv2D) (None, 256, 256, 3) 51 ['conv2d_17[0][0]']
171
+
172
+ ==================================================================================================
173
+ Total params: 2,158,739
174
+ Trainable params: 2,158,739
175
+ Non-trainable params: 0
176
+ ```
177
+ ## Libraries Used
178
+
179
+ The following libraries were used in this project:
180
+
181
+ - TensorFlow: To build segmentation model.
182
+ - Gradio: To create the user interface for the segmentation app.
183
+
184
+ ## License
185
+
186
+ This project is licensed under the [MIT License](LICENSE).
app.py ADDED
@@ -0,0 +1,93 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import gradio as gr
2
+ import tensorflow as tf
3
+ import numpy as np
4
+ import cv2
5
+ import matplotlib.pyplot as plt
6
+
7
+
8
+ # Path to the pre-trained sentiment analysis model
9
+ model_path = "saved_model"
10
+
11
+ # Load the pre-trained segmentation model
12
+ segmentation_model = tf.keras.models.load_model(model_path)
13
+
14
+ # Target image shape
15
+ TARGET_SHAPE = (256, 256)
16
+
17
+ # Define image segmentation function
18
+ def segment_image(img:np.ndarray):
19
+ # Original image shape
20
+ ORIGINAL_SHAPE = img.shape
21
+
22
+ # Check if the image is RGB and convert if not
23
+ if len(ORIGINAL_SHAPE) == 2:
24
+ img = cv2.cvtColor(img, cv2.COLOR_GRAY2RGB)
25
+
26
+ # Resize the image to TARGET_SHAPE
27
+ img = cv2.resize(img, TARGET_SHAPE)
28
+
29
+ # Add a batch dimension
30
+ img = np.expand_dims(img, axis=0)
31
+
32
+ # Predict the segmentation mask
33
+ mask = segmentation_model.predict(img)
34
+
35
+ # Remove the batch dimension
36
+ mask = np.squeeze(mask, axis=0)
37
+
38
+ # Convert to labels
39
+ mask = np.argmax(mask, axis=-1)
40
+
41
+ # Convert to uint8
42
+ mask = mask.astype(np.uint8)
43
+
44
+ # Resize to original image shape
45
+ mask = cv2.resize(mask, (ORIGINAL_SHAPE[1], ORIGINAL_SHAPE[0]))
46
+
47
+ return mask
48
+
49
+ def overlay_mask(img, mask, alpha=0.5):
50
+ # Define color mapping
51
+ colors = {
52
+ 0: [255, 0, 0], # Class 0 - Red
53
+ 1: [0, 255, 0], # Class 1 - Green
54
+ 2: [0, 0, 255] # Class 2 - Blue
55
+ # Add more colors for additional classes if needed
56
+ }
57
+
58
+ # Create a blank colored overlay image
59
+ overlay = np.zeros_like(img)
60
+
61
+ # Map each mask value to the corresponding color
62
+ for class_id, color in colors.items():
63
+ overlay[mask == class_id] = color
64
+
65
+ # Blend the overlay with the original image
66
+ output = cv2.addWeighted(img, 1 - alpha, overlay, alpha, 0)
67
+
68
+ return output
69
+
70
+
71
+ # The main function
72
+ def transform(img):
73
+ mask=segment_image(img)
74
+ blended_img = overlay_mask(img, mask)
75
+ return blended_img
76
+
77
+
78
+ # Create the Gradio app
79
+ app = gr.Interface(
80
+ fn=transform,
81
+ inputs=gr.Image(label="Input Image"),
82
+ outputs=gr.Image(label="Image with Segmentation Overlay"),
83
+ title="Image Segmentation on Pet Images",
84
+ description="Segment image of a pet animal into three classes: background, pet, and boundary.",
85
+ examples=[
86
+ "example_images/img1.jpg",
87
+ "example_images/img2.jpg",
88
+ "example_images/img3.jpg"
89
+ ]
90
+ )
91
+
92
+ # Run the app
93
+ app.launch()
example_images/img1.jpg ADDED
example_images/img2.jpg ADDED
example_images/img3.jpg ADDED
example_images/img4.jpg ADDED
readme_images/image.png ADDED
readme_images/unet.png ADDED
requirements.txt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ tensorflow
2
+ gradio
3
+ opencv-python
saved_model/fingerprint.pb ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:706b1eb7b39818e6adb05977067a9eb60de93f0ee08cdba69eab221ccbe0c2a5
3
+ size 56
saved_model/keras_metadata.pb ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:997f7b7999d5f61640e01f3812c19808ab71c88ccf47c7e3d6a90f6921991b7d
3
+ size 89706
saved_model/saved_model.pb ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:cb09b7345801bdfc009ceaed06323e63fbfa0992c73c9fc2506c4541d34b7abc
3
+ size 859084
saved_model/variables/variables.data-00000-of-00001 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b6c07ac84dc7c851f433881f68030336f10901f0d4594a3e84baaf6620dba4cf
3
+ size 25947878
saved_model/variables/variables.index ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:719056f4d8e75d7f561e76fd756fc3e8ba406025dd7c234583fa9c4c152cfd74
3
+ size 9077