Tesneem commited on
Commit
71a6152
·
verified ·
1 Parent(s): fed5fe3

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +2 -1
app.py CHANGED
@@ -11,6 +11,7 @@ embedding_model = SentenceTransformer("thenlper/gte-large")
11
 
12
  # Example dataset with genres (replace with your actual data)
13
  dataset = load_dataset("hugginglearners/netflix-shows")
 
14
  data = dataset['train'] # Accessing the 'train' split of the dataset
15
 
16
  # Convert the dataset to a list of dictionaries for easier indexing
@@ -29,7 +30,7 @@ def vector_search(query):
29
  query_embedding = get_embedding(query)
30
 
31
  # Generate embeddings for the combined description and genre
32
- embeddings = np.array([get_embedding(combine_description_title_and_genre(item["description"], item["listed_in"],item["title"])) for item in data_list])
33
 
34
  # Calculate cosine similarity between the query and all embeddings
35
  similarities = cosine_similarity([query_embedding], embeddings)
 
11
 
12
  # Example dataset with genres (replace with your actual data)
13
  dataset = load_dataset("hugginglearners/netflix-shows")
14
+ dataset = dataset[0].filter(lambda x: x['description'] is not None and x['listed_in'] is not None and x['title'] is not None)
15
  data = dataset['train'] # Accessing the 'train' split of the dataset
16
 
17
  # Convert the dataset to a list of dictionaries for easier indexing
 
30
  query_embedding = get_embedding(query)
31
 
32
  # Generate embeddings for the combined description and genre
33
+ embeddings = np.array([get_embedding(combine_description_title_and_genre(item["description"], item["listed_in"],item["title"])) for item in data_list[0]])
34
 
35
  # Calculate cosine similarity between the query and all embeddings
36
  similarities = cosine_similarity([query_embedding], embeddings)