Spaces:
Running
Running
Update document_chunker.py
Browse files- document_chunker.py +18 -22
document_chunker.py
CHANGED
@@ -7,6 +7,7 @@ from dataclasses import dataclass
|
|
7 |
from docx import Document
|
8 |
from sentence_transformers import SentenceTransformer
|
9 |
from sklearn.feature_extraction.text import TfidfVectorizer
|
|
|
10 |
|
11 |
|
12 |
@dataclass
|
@@ -56,37 +57,20 @@ class DocumentChunker:
|
|
56 |
}
|
57 |
}
|
58 |
|
59 |
-
def match_category(self, text: str, return_first: bool = True) -> Optional[str] or List[str]:
|
60 |
-
lower_text = text.lower()
|
61 |
-
match_scores = defaultdict(int)
|
62 |
-
for category, patterns in self.category_patterns.items():
|
63 |
-
for pattern in patterns:
|
64 |
-
matches = re.findall(pattern, lower_text)
|
65 |
-
match_scores[category] += len(matches)
|
66 |
-
|
67 |
-
if not match_scores:
|
68 |
-
return None if return_first else []
|
69 |
-
|
70 |
-
sorted_categories = sorted(match_scores.items(), key=lambda x: -x[1])
|
71 |
-
return sorted_categories[0][0] if return_first else [cat for cat, _ in sorted_categories if match_scores[cat] > 0]
|
72 |
-
|
73 |
-
# def extract_text_from_docx(self, file_path: str) -> str:
|
74 |
-
# doc = Document(file_path)
|
75 |
-
# return '\n'.join([f"**{p.text}**" if any(r.bold for r in p.runs) else p.text for p in doc.paragraphs])
|
76 |
def extract_text(self, file_path: str) -> str:
|
77 |
if file_path.endswith(".docx"):
|
78 |
doc = Document(file_path)
|
79 |
return '\n'.join([f"**{p.text}**" if any(r.bold for r in p.runs) else p.text for p in doc.paragraphs])
|
80 |
elif file_path.endswith(".pdf"):
|
81 |
-
import fitz # PyMuPDF
|
82 |
text = ""
|
83 |
with fitz.open(file_path) as doc:
|
84 |
for page in doc:
|
85 |
text += page.get_text()
|
86 |
return text
|
87 |
-
|
88 |
return Path(file_path).read_text()
|
89 |
-
|
|
|
90 |
|
91 |
def detect_document_type(self, text: str) -> str:
|
92 |
keywords = ['grant', 'funding', 'mission']
|
@@ -109,7 +93,6 @@ class DocumentChunker:
|
|
109 |
chunks = []
|
110 |
|
111 |
if not headers:
|
112 |
-
# fallback chunking
|
113 |
words = text.split()
|
114 |
for i in range(0, len(words), max_words):
|
115 |
piece = ' '.join(words[i:i + max_words])
|
@@ -140,6 +123,20 @@ class DocumentChunker:
|
|
140 |
})
|
141 |
return chunks
|
142 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
143 |
def extract_topics_tfidf(self, text: str, max_features: int = 3) -> List[str]:
|
144 |
clean = re.sub(r'[^\w\s]', ' ', text.lower())
|
145 |
vectorizer = TfidfVectorizer(max_features=max_features * 2, stop_words='english')
|
@@ -158,7 +155,6 @@ class DocumentChunker:
|
|
158 |
|
159 |
def process_document(self, file_path: str, title: Optional[str] = None) -> List[Dict]:
|
160 |
file_path = Path(file_path)
|
161 |
-
# text = self.extract_text_from_docx(str(file_path)) if file_path.suffix == ".docx" else file_path.read_text()
|
162 |
text = self.extract_text(str(file_path))
|
163 |
doc_type = self.detect_document_type(text)
|
164 |
headers = self.extract_headers(text, doc_type)
|
|
|
7 |
from docx import Document
|
8 |
from sentence_transformers import SentenceTransformer
|
9 |
from sklearn.feature_extraction.text import TfidfVectorizer
|
10 |
+
import fitz # PyMuPDF
|
11 |
|
12 |
|
13 |
@dataclass
|
|
|
57 |
}
|
58 |
}
|
59 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
60 |
def extract_text(self, file_path: str) -> str:
|
61 |
if file_path.endswith(".docx"):
|
62 |
doc = Document(file_path)
|
63 |
return '\n'.join([f"**{p.text}**" if any(r.bold for r in p.runs) else p.text for p in doc.paragraphs])
|
64 |
elif file_path.endswith(".pdf"):
|
|
|
65 |
text = ""
|
66 |
with fitz.open(file_path) as doc:
|
67 |
for page in doc:
|
68 |
text += page.get_text()
|
69 |
return text
|
70 |
+
elif file_path.endswith(".txt"):
|
71 |
return Path(file_path).read_text()
|
72 |
+
else:
|
73 |
+
raise ValueError("Unsupported file format")
|
74 |
|
75 |
def detect_document_type(self, text: str) -> str:
|
76 |
keywords = ['grant', 'funding', 'mission']
|
|
|
93 |
chunks = []
|
94 |
|
95 |
if not headers:
|
|
|
96 |
words = text.split()
|
97 |
for i in range(0, len(words), max_words):
|
98 |
piece = ' '.join(words[i:i + max_words])
|
|
|
123 |
})
|
124 |
return chunks
|
125 |
|
126 |
+
def match_category(self, text: str, return_first: bool = True) -> Optional[str] or List[str]:
|
127 |
+
lower_text = text.lower()
|
128 |
+
match_scores = defaultdict(int)
|
129 |
+
for category, patterns in self.category_patterns.items():
|
130 |
+
for pattern in patterns:
|
131 |
+
matches = re.findall(pattern, lower_text)
|
132 |
+
match_scores[category] += len(matches)
|
133 |
+
|
134 |
+
if not match_scores:
|
135 |
+
return None if return_first else []
|
136 |
+
|
137 |
+
sorted_categories = sorted(match_scores.items(), key=lambda x: -x[1])
|
138 |
+
return sorted_categories[0][0] if return_first else [cat for cat, _ in sorted_categories if match_scores[cat] > 0]
|
139 |
+
|
140 |
def extract_topics_tfidf(self, text: str, max_features: int = 3) -> List[str]:
|
141 |
clean = re.sub(r'[^\w\s]', ' ', text.lower())
|
142 |
vectorizer = TfidfVectorizer(max_features=max_features * 2, stop_words='english')
|
|
|
155 |
|
156 |
def process_document(self, file_path: str, title: Optional[str] = None) -> List[Dict]:
|
157 |
file_path = Path(file_path)
|
|
|
158 |
text = self.extract_text(str(file_path))
|
159 |
doc_type = self.detect_document_type(text)
|
160 |
headers = self.extract_headers(text, doc_type)
|