File size: 20,359 Bytes
9502853
 
 
 
 
 
 
 
0354172
9502853
ef3044e
0354172
9502853
 
 
 
0354172
9502853
 
0354172
 
9502853
 
0354172
9502853
 
 
 
 
 
 
0354172
9502853
0354172
9502853
0354172
9502853
 
 
 
0354172
9502853
0354172
9502853
 
0354172
9502853
 
0354172
9502853
 
 
 
 
 
 
d2155df
 
 
 
6d7e01a
d2155df
b87dc18
d2155df
 
 
 
 
 
 
 
 
 
b87dc18
d2155df
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0354172
9502853
 
 
 
 
 
d7880e6
9502853
 
d7880e6
 
b99c74d
d7880e6
 
 
 
 
 
 
 
 
 
 
 
0354172
9502853
 
 
 
 
 
0354172
9502853
0354172
9502853
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0354172
9502853
0354172
9502853
 
 
 
 
 
 
 
 
 
 
0354172
 
 
 
9502853
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b99c74d
9502853
 
 
 
 
b99c74d
1a91761
9502853
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
# #############################################################################################################################
# # Filename   : app.py
# # Description: A Streamlit application to showcase how RAG works.
# # Author     : Georgios Ioannou
# #
# # Copyright © 2024 by Georgios Ioannou
# #############################################################################################################################
# app.py
import os
import json
from huggingface_hub import HfApi
import streamlit as st
from typing import List, Dict, Any
from urllib.parse import quote_plus
from pymongo import MongoClient
from PyPDF2 import PdfReader

from langchain_community.embeddings import HuggingFaceInferenceAPIEmbeddings
from langchain_community.vectorstores import MongoDBAtlasVectorSearch
from langchain.prompts import PromptTemplate
from langchain.schema import Document
from langchain.schema.runnable import RunnableLambda, RunnablePassthrough
from huggingface_hub import InferenceClient

# =================== Secure Env via Hugging Face Secrets ===================
user = quote_plus(os.getenv("MONGO_USERNAME"))
password = quote_plus(os.getenv("MONGO_PASSWORD"))
cluster = os.getenv("MONGO_CLUSTER")
db_name = os.getenv("MONGO_DB_NAME", "files")
collection_name = os.getenv("MONGO_COLLECTION", "files_collection")
index_name = os.getenv("MONGO_VECTOR_INDEX", "vector_index")

HF_TOKEN = os.getenv("HF_TOKEN")

MONGO_URI = f"mongodb+srv://{user}:{password}@{cluster}/{db_name}?retryWrites=true&w=majority"

# =================== Prompt ===================
grantbuddy_prompt = PromptTemplate.from_template(
    """You are Grant Buddy, a specialized assistant helping nonprofits apply for grants. 
Always align answers with the nonprofit’s mission to combat systemic poverty through education, technology, and social innovation.

Use the following context to answer the question. Be concise and mission-aligned.

CONTEXT:
{context}

QUESTION:
{question}

Respond truthfully. If the answer is not available, say "This information is not available in the current context."
"""
)

# =================== Vector Search Setup ===================
@st.cache_resource
def init_vector_search() -> MongoDBAtlasVectorSearch:
    from langchain_community.embeddings import HuggingFaceInferenceAPIEmbeddings
    from langchain_community.vectorstores import MongoDBAtlasVectorSearch

    HF_TOKEN = os.getenv("HF_TOKEN", "").strip()
    model_name = "thenlper/gte-small"

    try:
        st.write(f"🔌 Connecting to Hugging Face model: `{model_name}`")
        embedding_model = HuggingFaceInferenceAPIEmbeddings(
            api_key=HF_TOKEN,
            model_name=model_name
        )

        # Test if embedding works
        test_vector = embedding_model.embed_query("Test query for Grant Buddy")
        st.success(f"✅ HF embedding model connected. Vector length: {len(test_vector)}")

    except Exception as e:
        st.error("❌ Failed to connect to Hugging Face Embedding API")
        st.error(f"Error: {e}")
        raise e  # Stop app here if embedding fails

    # MongoDB setup
    user = quote_plus(os.getenv("MONGO_USERNAME", "").strip())
    password = quote_plus(os.getenv("MONGO_PASSWORD", "").strip())
    cluster = os.getenv("MONGO_CLUSTER", "").strip()
    db_name = os.getenv("MONGO_DB_NAME", "files").strip()
    collection_name = os.getenv("MONGO_COLLECTION", "files_collection").strip()
    index_name = os.getenv("MONGO_VECTOR_INDEX", "vector_index").strip()

    MONGO_URI = f"mongodb+srv://{user}:{password}@{cluster}/{db_name}?retryWrites=true&w=majority"

    # Connect to vector search
    try:
        vector_store = MongoDBAtlasVectorSearch.from_connection_string(
            connection_string=MONGO_URI,
            namespace=f"{db_name}.{collection_name}",
            embedding=embedding_model,
            index_name=index_name
        )
        st.success("✅ Connected to MongoDB Vector Search")
        return vector_store

    except Exception as e:
        st.error("❌ Failed to connect to MongoDB Atlas Vector Search")
        st.error(f"Error: {e}")
        raise e


# =================== Format Retrieved Chunks ===================
def format_docs(docs: List[Document]) -> str:
    return "\n\n".join(doc.page_content or doc.metadata.get("content", "") for doc in docs)

# =================== Generate Response from Hugging Face Model ===================
def generate_response(input_dict: Dict[str, Any]) -> str:
    client = InferenceClient(api_key=HF_TOKEN.strip())
    prompt = grantbuddy_prompt.format(**input_dict)

    try:
        response = client.chat.completions.create(
            model="HuggingFaceH4/zephyr-7b-beta",
            messages=[
                {"role": "system", "content": prompt},
                {"role": "user", "content": input_dict["question"]},
            ],
            max_tokens=1000,
            temperature=0.2,
        )
        return response.choices[0].message.content
    except Exception as e:
        st.error(f"❌ Error from model: {e}")
        return "⚠️ Failed to generate response. Please check your model, HF token, or request format."


# =================== RAG Chain ===================
def get_rag_chain(retriever):
    return {
        "context": retriever | RunnableLambda(format_docs),
        "question": RunnablePassthrough()
    } | RunnableLambda(generate_response)

# =================== Streamlit UI ===================
def main():
    st.set_page_config(page_title="Grant Buddy RAG", page_icon="🤖")
    st.title("🤖 Grant Buddy: Grant-Writing Assistant")

    uploaded_file = st.file_uploader("Upload PDF or TXT for extra context (optional)", type=["pdf", "txt"])
    uploaded_text = ""
    if uploaded_file:
        if uploaded_file.name.endswith(".pdf"):
            reader = PdfReader(uploaded_file)
            uploaded_text = "\n".join([page.extract_text() for page in reader.pages])
        elif uploaded_file.name.endswith(".txt"):
            uploaded_text = uploaded_file.read().decode("utf-8")

    retriever = init_vector_search().as_retriever(search_kwargs={"k": 10, "score_threshold": 0.75})
    rag_chain = get_rag_chain(retriever)

    query = st.text_input("Ask a grant-related question")
    if st.button("Submit"):
        if not query:
            st.warning("Please enter a question.")
            return

        full_query = f"{query}\n\nAdditional context:\n{uploaded_text}" if uploaded_text else query
        with st.spinner("Thinking..."):
            response = rag_chain.invoke(full_query)
            st.text_area("Grant Buddy says:", value=response, height=250, disabled=True)

        with st.expander("🔍 Retrieved Chunks"):
            context_docs = retriever.get_relevant_documents(full_query)
            for doc in context_docs:
                st.markdown(f"**Chunk ID:** {doc.metadata.get('chunk_id', 'unknown')}")
                st.markdown(doc.page_content[:700] + "...")
                st.markdown("---")


if __name__ == "__main__":
    main()

# # Import libraries.
# import os
# import streamlit as st

# from dotenv import load_dotenv, find_dotenv
# from huggingface_hub import InferenceClient
# from langchain.prompts import PromptTemplate
# from langchain.schema import Document
# from langchain.schema.runnable import RunnablePassthrough, RunnableLambda
# # from langchain_community.embeddings import HuggingFaceInferenceAPIEmbeddings
# from langchain.embeddings import OpenAIEmbeddings
# from langchain_community.vectorstores import MongoDBAtlasVectorSearch
# from pymongo import MongoClient
# from pymongo.collection import Collection
# from typing import Dict, Any
# from langchain.chat_models import ChatOpenAI



# #############################################################################################################################


# class RAGQuestionAnswering:
#     def __init__(self):
#         """
#         Parameters
#         ----------
#         None

#         Output
#         ------
#         None

#         Purpose
#         -------
#         Initializes the RAG Question Answering system by setting up configuration
#         and loading environment variables.

#         Assumptions
#         -----------
#         - Expects .env file with MONGO_URI and HF_TOKEN
#         - Requires proper MongoDB setup with vector search index
#         - Needs connection to Hugging Face API

#         Notes
#         -----
#         This is the main class that handles all RAG operations
#         """
#         self.load_environment()
#         self.setup_mongodb()
#         self.setup_embedding_model()
#         self.setup_vector_search()
#         self.setup_rag_chain()

#     def load_environment(self) -> None:
#         """
#         Parameters
#         ----------
#         None

#         Output
#         ------
#         None

#         Purpose
#         -------
#         Loads environment variables from .env file and sets up configuration constants.

#         Assumptions
#         -----------
#         Expects a .env file with MONGO_URI and HF_TOKEN defined

#         Notes
#         -----
#         Will stop the application if required environment variables are missing
#         """

#         load_dotenv(find_dotenv())
#         self.MONGO_URI = os.getenv("MONGO_URI")
#         # self.HF_TOKEN = os.getenv("HF_TOKEN")
#         self.OPENAI_API_KEY = os.getenv("OPENAI_API_KEY")


#         if not self.MONGO_URI or not self.OPENAI_API_KEY:
#             st.error("Please ensure MONGO_URI and OPENAI_API_KEY are set in your .env file")
#             st.stop()

#         # MongoDB configuration.
#         self.DB_NAME = "txts"
#         self.COLLECTION_NAME = "txts_collection"
#         self.VECTOR_SEARCH_INDEX = "vector_index"

#     def setup_mongodb(self) -> None:
#         """
#         Parameters
#         ----------
#         None

#         Output
#         ------
#         None

#         Purpose
#         -------
#         Initializes the MongoDB connection and sets up the collection.

#         Assumptions
#         -----------
#         - Valid MongoDB URI is available
#         - Database and collection exist in MongoDB Atlas

#         Notes
#         -----
#         Uses st.cache_resource for efficient connection management
#         """

#         @st.cache_resource
#         def init_mongodb() -> Collection:
#             cluster = MongoClient(self.MONGO_URI)
#             return cluster[self.DB_NAME][self.COLLECTION_NAME]

#         self.mongodb_collection = init_mongodb()

#     def setup_embedding_model(self) -> None:
#         """
#         Parameters
#         ----------
#         None

#         Output
#         ------
#         None

#         Purpose
#         -------
#         Initializes the embedding model for vector search.

#         Assumptions
#         -----------
#         - Valid Hugging Face API token
#         - Internet connection to access the model

#         Notes
#         -----
#         Uses the all-mpnet-base-v2 model from sentence-transformers
#         """

#         # @st.cache_resource
#         # def init_embedding_model() -> HuggingFaceInferenceAPIEmbeddings:
#         #     return HuggingFaceInferenceAPIEmbeddings(
#         #         api_key=self.HF_TOKEN,
#         #         model_name="sentence-transformers/all-mpnet-base-v2",
#         #     )

#         @st.cache_resource
#         def init_embedding_model() -> OpenAIEmbeddings:
#             return OpenAIEmbeddings(model="text-embedding-3-small", openai_api_key=self.OPENAI_API_KEY)

#         self.embedding_model = init_embedding_model()

#     def setup_vector_search(self) -> None:
#         """
#         Parameters
#         ----------
#         None

#         Output
#         ------
#         None

#         Purpose
#         -------
#         Sets up the vector search functionality using MongoDB Atlas.

#         Assumptions
#         -----------
#         - MongoDB Atlas vector search index is properly configured
#         - Valid embedding model is initialized

#         Notes
#         -----
#         Creates a retriever with similarity search and score threshold
#         """

#         @st.cache_resource
#         def init_vector_search() -> MongoDBAtlasVectorSearch:
#             return MongoDBAtlasVectorSearch.from_connection_string(
#                 connection_string=self.MONGO_URI,
#                 namespace=f"{self.DB_NAME}.{self.COLLECTION_NAME}",
#                 embedding=self.embedding_model,
#                 index_name=self.VECTOR_SEARCH_INDEX,
#             )

#         self.vector_search = init_vector_search()
#         self.retriever = self.vector_search.as_retriever(
#             search_type="similarity", search_kwargs={"k": 10, "score_threshold": 0.85}
#         )

#     def format_docs(self, docs: list[Document]) -> str:
#         """
#         Parameters
#         ----------
#         **docs:** list[Document] - List of documents to be formatted

#         Output
#         ------
#         str: Formatted string containing concatenated document content

#         Purpose
#         -------
#         Formats the retrieved documents into a single string for processing

#         Assumptions
#         -----------
#         Documents have page_content attribute

#         Notes
#         -----
#         Joins documents with double newlines for better readability
#         """

#         return "\n\n".join(doc.page_content for doc in docs)

#     # def generate_response(self, input_dict: Dict[str, Any]) -> str:
#     #     """
#     #     Parameters
#     #     ----------
#     #     **input_dict:** Dict[str, Any] - Dictionary containing context and question

#     #     Output
#     #     ------
#     #     str: Generated response from the model

#     #     Purpose
#     #     -------
#     #     Generates a response using the Hugging Face model based on context and question

#     #     Assumptions
#     #     -----------
#     #     - Valid Hugging Face API token
#     #     - Input dictionary contains 'context' and 'question' keys

#     #     Notes
#     #     -----
#     #     Uses Zephyr model with controlled temperature
#     #     """
#     #     hf_client = InferenceClient(api_key=self.HF_TOKEN)
#     #     formatted_prompt = self.prompt.format(**input_dict)

#     #     response = hf_client.chat.completions.create(
#     #         model="HuggingFaceH4/zephyr-7b-beta"

#     #         messages=[
#     #             {"role": "system", "content": formatted_prompt},
#     #             {"role": "user", "content": input_dict["question"]},
#     #         ],
#     #         max_tokens=1000,
#     #         temperature=0.2,
#     #     )

#     #     return response.choices[0].message.content
#     from langchain.chat_models import ChatOpenAI
#     from langchain.schema.messages import SystemMessage, HumanMessage

#     def generate_response(self, input_dict: Dict[str, Any]) -> str:
#         llm = ChatOpenAI(
#         model="gpt-4",  # or "gpt-3.5-turbo"
#         temperature=0.2,
#         openai_api_key=self.OPENAI_API_KEY,
#     )
    
#     messages = [
#         SystemMessage(content=self.prompt.format(**input_dict)),
#         HumanMessage(content=input_dict["question"]),
#     ]
    
#     return llm(messages).content


#     def setup_rag_chain(self) -> None:
#         """
#         Parameters
#         ----------
#         None

#         Output
#         ------
#         None

#         Purpose
#         -------
#         Sets up the RAG chain for processing questions and generating answers

#         Assumptions
#         -----------
#         Retriever and response generator are properly initialized

#         Notes
#         -----
#         Creates a chain that combines retrieval and response generation
#         """

#         self.prompt = PromptTemplate.from_template(
#             """Use the following pieces of context to answer the question at the end.

#             START OF CONTEXT:
#             {context}
#             END OF CONTEXT:
            
#             START OF QUESTION:
#             {question}
#             END OF QUESTION:

#             If you do not know the answer, just say that you do not know.
#             NEVER assume things.
#             """
#         )

#         self.rag_chain = {
#             "context": self.retriever | RunnableLambda(self.format_docs),
#             "question": RunnablePassthrough(),
#         } | RunnableLambda(self.generate_response)

#     def process_question(self, question: str) -> str:
#         """
#         Parameters
#         ----------
#         **question:** str - The user's question to be answered

#         Output
#         ------
#         str: The generated answer to the question

#         Purpose
#         -------
#         Processes a user question through the RAG chain and returns an answer

#         Assumptions
#         -----------
#         - Question is a non-empty string
#         - RAG chain is properly initialized

#         Notes
#         -----
#         Main interface for question-answering functionality
#         """

#         return self.rag_chain.invoke(question)


# #############################################################################################################################
# def setup_streamlit_ui() -> None:
#     """
#     Parameters
#     ----------
#     None

#     Output
#     ------
#     None

#     Purpose
#     -------
#     Sets up the Streamlit user interface with proper styling and layout

#     Assumptions
#     -----------
#     - CSS file exists at ./static/styles/style.css
#     - Image file exists at ./static/images/ctp.png

#     Notes
#     -----
#     Handles all UI-related setup and styling
#     """

#     st.set_page_config(page_title="RAG Question Answering", page_icon="🤖")

#     # Load CSS.
#     with open("./static/styles/style.css") as f:
#         st.markdown(f"<style>{f.read()}</style>", unsafe_allow_html=True)

#     # Title and subtitles.
#     st.markdown(
#         '<h1 align="center" style="font-family: monospace; font-size: 2.1rem; margin-top: -4rem">RAG Question Answering</h1>',
#         unsafe_allow_html=True,
#     )
#     st.markdown(
#         '<h3 align="center" style="font-family: monospace; font-size: 1.5rem; margin-top: -2rem">Using Zoom Closed Captioning From The Lectures</h3>',
#         unsafe_allow_html=True,
#     )
#     st.markdown(
#         '<h2 align="center" style="font-family: monospace; font-size: 1.5rem; margin-top: 0rem">CUNY Tech Prep Tutorial 5</h2>',
#         unsafe_allow_html=True,
#     )

#     # Display logo.
#     left_co, cent_co, last_co = st.columns(3)
#     with cent_co:
#         st.image("./static/images/ctp.png")


# #############################################################################################################################


# def main():
#     """
#     Parameters
#     ----------
#     None

#     Output
#     ------
#     None

#     Purpose
#     -------
#     Main function that runs the Streamlit application

#     Assumptions
#     -----------
#     All required environment variables and files are present

#     Notes
#     -----
#     Entry point for the application
#     """

#     # Setup UI.
#     setup_streamlit_ui()

#     # Initialize RAG system.
#     rag_system = RAGQuestionAnswering()

#     # Create input elements.
#     query = st.text_input("Question:", key="question_input")

#     # Handle submission.
#     if st.button("Submit", type="primary"):
#         if query:
#             with st.spinner("Generating response..."):
#                 response = rag_system.process_question(query)
#                 st.text_area("Answer:", value=response, height=200, disabled=True)
#         else:
#             st.warning("Please enter a question.")

#     # Add GitHub link.
#     st.markdown(
#         """
#         <p align="center" style="font-family: monospace; color: #FAF9F6; font-size: 1rem;">
#         <b>Check out our <a href="https://github.com/GeorgiosIoannouCoder/" style="color: #FAF9F6;">GitHub repository</a></b>
#         </p>
#         """,
#         unsafe_allow_html=True,
#     )


# #############################################################################################################################
# if __name__ == "__main__":
#     main()