Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -16,6 +16,8 @@ from pymongo import MongoClient
|
|
16 |
from PyPDF2 import PdfReader
|
17 |
|
18 |
from langchain_community.embeddings import HuggingFaceInferenceAPIEmbeddings
|
|
|
|
|
19 |
from langchain_community.vectorstores import MongoDBAtlasVectorSearch
|
20 |
from langchain.prompts import PromptTemplate
|
21 |
from langchain.schema import Document
|
@@ -52,21 +54,26 @@ Respond truthfully. If the answer is not available, say "This information is not
|
|
52 |
)
|
53 |
|
54 |
# =================== Vector Search Setup ===================
|
|
|
|
|
|
|
|
|
55 |
@st.cache_resource
|
56 |
def init_vector_search() -> MongoDBAtlasVectorSearch:
|
57 |
from langchain_community.embeddings import HuggingFaceInferenceAPIEmbeddings
|
58 |
from langchain_community.vectorstores import MongoDBAtlasVectorSearch
|
59 |
|
60 |
HF_TOKEN = os.getenv("HF_TOKEN", "").strip()
|
61 |
-
model_name = "thenlper/gte-small"
|
62 |
|
63 |
try:
|
64 |
st.write(f"🔌 Connecting to Hugging Face model: `{model_name}`")
|
65 |
-
embedding_model = HuggingFaceInferenceAPIEmbeddings(
|
66 |
-
|
67 |
-
|
68 |
-
)
|
69 |
|
|
|
70 |
# Test if embedding works
|
71 |
test_vector = embedding_model.embed_query("Test query for Grant Buddy")
|
72 |
st.success(f"✅ HF embedding model connected. Vector length: {len(test_vector)}")
|
@@ -174,462 +181,4 @@ def main():
|
|
174 |
if __name__ == "__main__":
|
175 |
main()
|
176 |
|
177 |
-
# # Import libraries.
|
178 |
-
# import os
|
179 |
-
# import streamlit as st
|
180 |
-
|
181 |
-
# from dotenv import load_dotenv, find_dotenv
|
182 |
-
# from huggingface_hub import InferenceClient
|
183 |
-
# from langchain.prompts import PromptTemplate
|
184 |
-
# from langchain.schema import Document
|
185 |
-
# from langchain.schema.runnable import RunnablePassthrough, RunnableLambda
|
186 |
-
# # from langchain_community.embeddings import HuggingFaceInferenceAPIEmbeddings
|
187 |
-
# from langchain.embeddings import OpenAIEmbeddings
|
188 |
-
# from langchain_community.vectorstores import MongoDBAtlasVectorSearch
|
189 |
-
# from pymongo import MongoClient
|
190 |
-
# from pymongo.collection import Collection
|
191 |
-
# from typing import Dict, Any
|
192 |
-
# from langchain.chat_models import ChatOpenAI
|
193 |
-
|
194 |
-
|
195 |
-
|
196 |
-
# #############################################################################################################################
|
197 |
-
|
198 |
-
|
199 |
-
# class RAGQuestionAnswering:
|
200 |
-
# def __init__(self):
|
201 |
-
# """
|
202 |
-
# Parameters
|
203 |
-
# ----------
|
204 |
-
# None
|
205 |
-
|
206 |
-
# Output
|
207 |
-
# ------
|
208 |
-
# None
|
209 |
-
|
210 |
-
# Purpose
|
211 |
-
# -------
|
212 |
-
# Initializes the RAG Question Answering system by setting up configuration
|
213 |
-
# and loading environment variables.
|
214 |
-
|
215 |
-
# Assumptions
|
216 |
-
# -----------
|
217 |
-
# - Expects .env file with MONGO_URI and HF_TOKEN
|
218 |
-
# - Requires proper MongoDB setup with vector search index
|
219 |
-
# - Needs connection to Hugging Face API
|
220 |
-
|
221 |
-
# Notes
|
222 |
-
# -----
|
223 |
-
# This is the main class that handles all RAG operations
|
224 |
-
# """
|
225 |
-
# self.load_environment()
|
226 |
-
# self.setup_mongodb()
|
227 |
-
# self.setup_embedding_model()
|
228 |
-
# self.setup_vector_search()
|
229 |
-
# self.setup_rag_chain()
|
230 |
-
|
231 |
-
# def load_environment(self) -> None:
|
232 |
-
# """
|
233 |
-
# Parameters
|
234 |
-
# ----------
|
235 |
-
# None
|
236 |
-
|
237 |
-
# Output
|
238 |
-
# ------
|
239 |
-
# None
|
240 |
-
|
241 |
-
# Purpose
|
242 |
-
# -------
|
243 |
-
# Loads environment variables from .env file and sets up configuration constants.
|
244 |
-
|
245 |
-
# Assumptions
|
246 |
-
# -----------
|
247 |
-
# Expects a .env file with MONGO_URI and HF_TOKEN defined
|
248 |
-
|
249 |
-
# Notes
|
250 |
-
# -----
|
251 |
-
# Will stop the application if required environment variables are missing
|
252 |
-
# """
|
253 |
-
|
254 |
-
# load_dotenv(find_dotenv())
|
255 |
-
# self.MONGO_URI = os.getenv("MONGO_URI")
|
256 |
-
# # self.HF_TOKEN = os.getenv("HF_TOKEN")
|
257 |
-
# self.OPENAI_API_KEY = os.getenv("OPENAI_API_KEY")
|
258 |
-
|
259 |
-
|
260 |
-
# if not self.MONGO_URI or not self.OPENAI_API_KEY:
|
261 |
-
# st.error("Please ensure MONGO_URI and OPENAI_API_KEY are set in your .env file")
|
262 |
-
# st.stop()
|
263 |
-
|
264 |
-
# # MongoDB configuration.
|
265 |
-
# self.DB_NAME = "txts"
|
266 |
-
# self.COLLECTION_NAME = "txts_collection"
|
267 |
-
# self.VECTOR_SEARCH_INDEX = "vector_index"
|
268 |
-
|
269 |
-
# def setup_mongodb(self) -> None:
|
270 |
-
# """
|
271 |
-
# Parameters
|
272 |
-
# ----------
|
273 |
-
# None
|
274 |
-
|
275 |
-
# Output
|
276 |
-
# ------
|
277 |
-
# None
|
278 |
-
|
279 |
-
# Purpose
|
280 |
-
# -------
|
281 |
-
# Initializes the MongoDB connection and sets up the collection.
|
282 |
-
|
283 |
-
# Assumptions
|
284 |
-
# -----------
|
285 |
-
# - Valid MongoDB URI is available
|
286 |
-
# - Database and collection exist in MongoDB Atlas
|
287 |
-
|
288 |
-
# Notes
|
289 |
-
# -----
|
290 |
-
# Uses st.cache_resource for efficient connection management
|
291 |
-
# """
|
292 |
-
|
293 |
-
# @st.cache_resource
|
294 |
-
# def init_mongodb() -> Collection:
|
295 |
-
# cluster = MongoClient(self.MONGO_URI)
|
296 |
-
# return cluster[self.DB_NAME][self.COLLECTION_NAME]
|
297 |
-
|
298 |
-
# self.mongodb_collection = init_mongodb()
|
299 |
-
|
300 |
-
# def setup_embedding_model(self) -> None:
|
301 |
-
# """
|
302 |
-
# Parameters
|
303 |
-
# ----------
|
304 |
-
# None
|
305 |
-
|
306 |
-
# Output
|
307 |
-
# ------
|
308 |
-
# None
|
309 |
-
|
310 |
-
# Purpose
|
311 |
-
# -------
|
312 |
-
# Initializes the embedding model for vector search.
|
313 |
-
|
314 |
-
# Assumptions
|
315 |
-
# -----------
|
316 |
-
# - Valid Hugging Face API token
|
317 |
-
# - Internet connection to access the model
|
318 |
-
|
319 |
-
# Notes
|
320 |
-
# -----
|
321 |
-
# Uses the all-mpnet-base-v2 model from sentence-transformers
|
322 |
-
# """
|
323 |
-
|
324 |
-
# # @st.cache_resource
|
325 |
-
# # def init_embedding_model() -> HuggingFaceInferenceAPIEmbeddings:
|
326 |
-
# # return HuggingFaceInferenceAPIEmbeddings(
|
327 |
-
# # api_key=self.HF_TOKEN,
|
328 |
-
# # model_name="sentence-transformers/all-mpnet-base-v2",
|
329 |
-
# # )
|
330 |
-
|
331 |
-
# @st.cache_resource
|
332 |
-
# def init_embedding_model() -> OpenAIEmbeddings:
|
333 |
-
# return OpenAIEmbeddings(model="text-embedding-3-small", openai_api_key=self.OPENAI_API_KEY)
|
334 |
-
|
335 |
-
# self.embedding_model = init_embedding_model()
|
336 |
-
|
337 |
-
# def setup_vector_search(self) -> None:
|
338 |
-
# """
|
339 |
-
# Parameters
|
340 |
-
# ----------
|
341 |
-
# None
|
342 |
-
|
343 |
-
# Output
|
344 |
-
# ------
|
345 |
-
# None
|
346 |
-
|
347 |
-
# Purpose
|
348 |
-
# -------
|
349 |
-
# Sets up the vector search functionality using MongoDB Atlas.
|
350 |
-
|
351 |
-
# Assumptions
|
352 |
-
# -----------
|
353 |
-
# - MongoDB Atlas vector search index is properly configured
|
354 |
-
# - Valid embedding model is initialized
|
355 |
-
|
356 |
-
# Notes
|
357 |
-
# -----
|
358 |
-
# Creates a retriever with similarity search and score threshold
|
359 |
-
# """
|
360 |
-
|
361 |
-
# @st.cache_resource
|
362 |
-
# def init_vector_search() -> MongoDBAtlasVectorSearch:
|
363 |
-
# return MongoDBAtlasVectorSearch.from_connection_string(
|
364 |
-
# connection_string=self.MONGO_URI,
|
365 |
-
# namespace=f"{self.DB_NAME}.{self.COLLECTION_NAME}",
|
366 |
-
# embedding=self.embedding_model,
|
367 |
-
# index_name=self.VECTOR_SEARCH_INDEX,
|
368 |
-
# )
|
369 |
-
|
370 |
-
# self.vector_search = init_vector_search()
|
371 |
-
# self.retriever = self.vector_search.as_retriever(
|
372 |
-
# search_type="similarity", search_kwargs={"k": 10, "score_threshold": 0.85}
|
373 |
-
# )
|
374 |
-
|
375 |
-
# def format_docs(self, docs: list[Document]) -> str:
|
376 |
-
# """
|
377 |
-
# Parameters
|
378 |
-
# ----------
|
379 |
-
# **docs:** list[Document] - List of documents to be formatted
|
380 |
-
|
381 |
-
# Output
|
382 |
-
# ------
|
383 |
-
# str: Formatted string containing concatenated document content
|
384 |
-
|
385 |
-
# Purpose
|
386 |
-
# -------
|
387 |
-
# Formats the retrieved documents into a single string for processing
|
388 |
-
|
389 |
-
# Assumptions
|
390 |
-
# -----------
|
391 |
-
# Documents have page_content attribute
|
392 |
-
|
393 |
-
# Notes
|
394 |
-
# -----
|
395 |
-
# Joins documents with double newlines for better readability
|
396 |
-
# """
|
397 |
-
|
398 |
-
# return "\n\n".join(doc.page_content for doc in docs)
|
399 |
-
|
400 |
-
# # def generate_response(self, input_dict: Dict[str, Any]) -> str:
|
401 |
-
# # """
|
402 |
-
# # Parameters
|
403 |
-
# # ----------
|
404 |
-
# # **input_dict:** Dict[str, Any] - Dictionary containing context and question
|
405 |
-
|
406 |
-
# # Output
|
407 |
-
# # ------
|
408 |
-
# # str: Generated response from the model
|
409 |
-
|
410 |
-
# # Purpose
|
411 |
-
# # -------
|
412 |
-
# # Generates a response using the Hugging Face model based on context and question
|
413 |
-
|
414 |
-
# # Assumptions
|
415 |
-
# # -----------
|
416 |
-
# # - Valid Hugging Face API token
|
417 |
-
# # - Input dictionary contains 'context' and 'question' keys
|
418 |
-
|
419 |
-
# # Notes
|
420 |
-
# # -----
|
421 |
-
# # Uses Zephyr model with controlled temperature
|
422 |
-
# # """
|
423 |
-
# # hf_client = InferenceClient(api_key=self.HF_TOKEN)
|
424 |
-
# # formatted_prompt = self.prompt.format(**input_dict)
|
425 |
-
|
426 |
-
# # response = hf_client.chat.completions.create(
|
427 |
-
# # model="HuggingFaceH4/zephyr-7b-beta"
|
428 |
-
|
429 |
-
# # messages=[
|
430 |
-
# # {"role": "system", "content": formatted_prompt},
|
431 |
-
# # {"role": "user", "content": input_dict["question"]},
|
432 |
-
# # ],
|
433 |
-
# # max_tokens=1000,
|
434 |
-
# # temperature=0.2,
|
435 |
-
# # )
|
436 |
-
|
437 |
-
# # return response.choices[0].message.content
|
438 |
-
# from langchain.chat_models import ChatOpenAI
|
439 |
-
# from langchain.schema.messages import SystemMessage, HumanMessage
|
440 |
-
|
441 |
-
# def generate_response(self, input_dict: Dict[str, Any]) -> str:
|
442 |
-
# llm = ChatOpenAI(
|
443 |
-
# model="gpt-4", # or "gpt-3.5-turbo"
|
444 |
-
# temperature=0.2,
|
445 |
-
# openai_api_key=self.OPENAI_API_KEY,
|
446 |
-
# )
|
447 |
-
|
448 |
-
# messages = [
|
449 |
-
# SystemMessage(content=self.prompt.format(**input_dict)),
|
450 |
-
# HumanMessage(content=input_dict["question"]),
|
451 |
-
# ]
|
452 |
-
|
453 |
-
# return llm(messages).content
|
454 |
-
|
455 |
-
|
456 |
-
# def setup_rag_chain(self) -> None:
|
457 |
-
# """
|
458 |
-
# Parameters
|
459 |
-
# ----------
|
460 |
-
# None
|
461 |
-
|
462 |
-
# Output
|
463 |
-
# ------
|
464 |
-
# None
|
465 |
-
|
466 |
-
# Purpose
|
467 |
-
# -------
|
468 |
-
# Sets up the RAG chain for processing questions and generating answers
|
469 |
-
|
470 |
-
# Assumptions
|
471 |
-
# -----------
|
472 |
-
# Retriever and response generator are properly initialized
|
473 |
-
|
474 |
-
# Notes
|
475 |
-
# -----
|
476 |
-
# Creates a chain that combines retrieval and response generation
|
477 |
-
# """
|
478 |
-
|
479 |
-
# self.prompt = PromptTemplate.from_template(
|
480 |
-
# """Use the following pieces of context to answer the question at the end.
|
481 |
-
|
482 |
-
# START OF CONTEXT:
|
483 |
-
# {context}
|
484 |
-
# END OF CONTEXT:
|
485 |
-
|
486 |
-
# START OF QUESTION:
|
487 |
-
# {question}
|
488 |
-
# END OF QUESTION:
|
489 |
-
|
490 |
-
# If you do not know the answer, just say that you do not know.
|
491 |
-
# NEVER assume things.
|
492 |
-
# """
|
493 |
-
# )
|
494 |
-
|
495 |
-
# self.rag_chain = {
|
496 |
-
# "context": self.retriever | RunnableLambda(self.format_docs),
|
497 |
-
# "question": RunnablePassthrough(),
|
498 |
-
# } | RunnableLambda(self.generate_response)
|
499 |
-
|
500 |
-
# def process_question(self, question: str) -> str:
|
501 |
-
# """
|
502 |
-
# Parameters
|
503 |
-
# ----------
|
504 |
-
# **question:** str - The user's question to be answered
|
505 |
|
506 |
-
# Output
|
507 |
-
# ------
|
508 |
-
# str: The generated answer to the question
|
509 |
-
|
510 |
-
# Purpose
|
511 |
-
# -------
|
512 |
-
# Processes a user question through the RAG chain and returns an answer
|
513 |
-
|
514 |
-
# Assumptions
|
515 |
-
# -----------
|
516 |
-
# - Question is a non-empty string
|
517 |
-
# - RAG chain is properly initialized
|
518 |
-
|
519 |
-
# Notes
|
520 |
-
# -----
|
521 |
-
# Main interface for question-answering functionality
|
522 |
-
# """
|
523 |
-
|
524 |
-
# return self.rag_chain.invoke(question)
|
525 |
-
|
526 |
-
|
527 |
-
# #############################################################################################################################
|
528 |
-
# def setup_streamlit_ui() -> None:
|
529 |
-
# """
|
530 |
-
# Parameters
|
531 |
-
# ----------
|
532 |
-
# None
|
533 |
-
|
534 |
-
# Output
|
535 |
-
# ------
|
536 |
-
# None
|
537 |
-
|
538 |
-
# Purpose
|
539 |
-
# -------
|
540 |
-
# Sets up the Streamlit user interface with proper styling and layout
|
541 |
-
|
542 |
-
# Assumptions
|
543 |
-
# -----------
|
544 |
-
# - CSS file exists at ./static/styles/style.css
|
545 |
-
# - Image file exists at ./static/images/ctp.png
|
546 |
-
|
547 |
-
# Notes
|
548 |
-
# -----
|
549 |
-
# Handles all UI-related setup and styling
|
550 |
-
# """
|
551 |
-
|
552 |
-
# st.set_page_config(page_title="RAG Question Answering", page_icon="🤖")
|
553 |
-
|
554 |
-
# # Load CSS.
|
555 |
-
# with open("./static/styles/style.css") as f:
|
556 |
-
# st.markdown(f"<style>{f.read()}</style>", unsafe_allow_html=True)
|
557 |
-
|
558 |
-
# # Title and subtitles.
|
559 |
-
# st.markdown(
|
560 |
-
# '<h1 align="center" style="font-family: monospace; font-size: 2.1rem; margin-top: -4rem">RAG Question Answering</h1>',
|
561 |
-
# unsafe_allow_html=True,
|
562 |
-
# )
|
563 |
-
# st.markdown(
|
564 |
-
# '<h3 align="center" style="font-family: monospace; font-size: 1.5rem; margin-top: -2rem">Using Zoom Closed Captioning From The Lectures</h3>',
|
565 |
-
# unsafe_allow_html=True,
|
566 |
-
# )
|
567 |
-
# st.markdown(
|
568 |
-
# '<h2 align="center" style="font-family: monospace; font-size: 1.5rem; margin-top: 0rem">CUNY Tech Prep Tutorial 5</h2>',
|
569 |
-
# unsafe_allow_html=True,
|
570 |
-
# )
|
571 |
-
|
572 |
-
# # Display logo.
|
573 |
-
# left_co, cent_co, last_co = st.columns(3)
|
574 |
-
# with cent_co:
|
575 |
-
# st.image("./static/images/ctp.png")
|
576 |
-
|
577 |
-
|
578 |
-
# #############################################################################################################################
|
579 |
-
|
580 |
-
|
581 |
-
# def main():
|
582 |
-
# """
|
583 |
-
# Parameters
|
584 |
-
# ----------
|
585 |
-
# None
|
586 |
-
|
587 |
-
# Output
|
588 |
-
# ------
|
589 |
-
# None
|
590 |
-
|
591 |
-
# Purpose
|
592 |
-
# -------
|
593 |
-
# Main function that runs the Streamlit application
|
594 |
-
|
595 |
-
# Assumptions
|
596 |
-
# -----------
|
597 |
-
# All required environment variables and files are present
|
598 |
-
|
599 |
-
# Notes
|
600 |
-
# -----
|
601 |
-
# Entry point for the application
|
602 |
-
# """
|
603 |
-
|
604 |
-
# # Setup UI.
|
605 |
-
# setup_streamlit_ui()
|
606 |
-
|
607 |
-
# # Initialize RAG system.
|
608 |
-
# rag_system = RAGQuestionAnswering()
|
609 |
-
|
610 |
-
# # Create input elements.
|
611 |
-
# query = st.text_input("Question:", key="question_input")
|
612 |
-
|
613 |
-
# # Handle submission.
|
614 |
-
# if st.button("Submit", type="primary"):
|
615 |
-
# if query:
|
616 |
-
# with st.spinner("Generating response..."):
|
617 |
-
# response = rag_system.process_question(query)
|
618 |
-
# st.text_area("Answer:", value=response, height=200, disabled=True)
|
619 |
-
# else:
|
620 |
-
# st.warning("Please enter a question.")
|
621 |
-
|
622 |
-
# # Add GitHub link.
|
623 |
-
# st.markdown(
|
624 |
-
# """
|
625 |
-
# <p align="center" style="font-family: monospace; color: #FAF9F6; font-size: 1rem;">
|
626 |
-
# <b>Check out our <a href="https://github.com/GeorgiosIoannouCoder/" style="color: #FAF9F6;">GitHub repository</a></b>
|
627 |
-
# </p>
|
628 |
-
# """,
|
629 |
-
# unsafe_allow_html=True,
|
630 |
-
# )
|
631 |
-
|
632 |
-
|
633 |
-
# #############################################################################################################################
|
634 |
-
# if __name__ == "__main__":
|
635 |
-
# main()
|
|
|
16 |
from PyPDF2 import PdfReader
|
17 |
|
18 |
from langchain_community.embeddings import HuggingFaceInferenceAPIEmbeddings
|
19 |
+
from langchain.embeddings import HuggingFaceEmbeddings
|
20 |
+
|
21 |
from langchain_community.vectorstores import MongoDBAtlasVectorSearch
|
22 |
from langchain.prompts import PromptTemplate
|
23 |
from langchain.schema import Document
|
|
|
54 |
)
|
55 |
|
56 |
# =================== Vector Search Setup ===================
|
57 |
+
@st.cache_resource
|
58 |
+
def init_embedding_model():
|
59 |
+
return HuggingFaceEmbeddings(model_name="sentence-transformers/all-mpnet-base-v2")
|
60 |
+
|
61 |
@st.cache_resource
|
62 |
def init_vector_search() -> MongoDBAtlasVectorSearch:
|
63 |
from langchain_community.embeddings import HuggingFaceInferenceAPIEmbeddings
|
64 |
from langchain_community.vectorstores import MongoDBAtlasVectorSearch
|
65 |
|
66 |
HF_TOKEN = os.getenv("HF_TOKEN", "").strip()
|
67 |
+
# model_name = "thenlper/gte-small"
|
68 |
|
69 |
try:
|
70 |
st.write(f"🔌 Connecting to Hugging Face model: `{model_name}`")
|
71 |
+
# embedding_model = HuggingFaceInferenceAPIEmbeddings(
|
72 |
+
# api_key=HF_TOKEN,
|
73 |
+
# model_name=model_name
|
74 |
+
# )
|
75 |
|
76 |
+
embedding_model=init_embedding_model()
|
77 |
# Test if embedding works
|
78 |
test_vector = embedding_model.embed_query("Test query for Grant Buddy")
|
79 |
st.success(f"✅ HF embedding model connected. Vector length: {len(test_vector)}")
|
|
|
181 |
if __name__ == "__main__":
|
182 |
main()
|
183 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
184 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|