Spaces:
Runtime error
Runtime error
Upload app.py
Browse files
app.py
ADDED
|
@@ -0,0 +1,291 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""This script refers to the dialogue example of streamlit, the interactive
|
| 2 |
+
generation code of chatglm2 and transformers.
|
| 3 |
+
|
| 4 |
+
We mainly modified part of the code logic to adapt to the
|
| 5 |
+
generation of our model.
|
| 6 |
+
Please refer to these links below for more information:
|
| 7 |
+
1. streamlit chat example:
|
| 8 |
+
https://docs.streamlit.io/knowledge-base/tutorials/build-conversational-apps
|
| 9 |
+
2. chatglm2:
|
| 10 |
+
https://github.com/THUDM/ChatGLM2-6B
|
| 11 |
+
3. transformers:
|
| 12 |
+
https://github.com/huggingface/transformers
|
| 13 |
+
Please run with the command `streamlit run path/to/web_demo.py
|
| 14 |
+
--server.address=0.0.0.0 --server.port 7860`.
|
| 15 |
+
Using `python path/to/web_demo.py` may cause unknown problems.
|
| 16 |
+
"""
|
| 17 |
+
# isort: skip_file
|
| 18 |
+
import copy
|
| 19 |
+
import warnings
|
| 20 |
+
from dataclasses import asdict, dataclass
|
| 21 |
+
from typing import Callable, List, Optional
|
| 22 |
+
|
| 23 |
+
import streamlit as st
|
| 24 |
+
import torch
|
| 25 |
+
from torch import nn
|
| 26 |
+
from transformers.generation.utils import (LogitsProcessorList,
|
| 27 |
+
StoppingCriteriaList)
|
| 28 |
+
from transformers.utils import logging
|
| 29 |
+
|
| 30 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM # isort: skip
|
| 31 |
+
|
| 32 |
+
logger = logging.get_logger(__name__)
|
| 33 |
+
model_name_or_path="Testdevk-1/internlm2_5-7b-chat-2502xtuner" #改成自己HF上的模型信息"username/model_name"
|
| 34 |
+
|
| 35 |
+
@dataclass
|
| 36 |
+
class GenerationConfig:
|
| 37 |
+
# this config is used for chat to provide more diversity
|
| 38 |
+
max_length: int = 32768
|
| 39 |
+
top_p: float = 0.8
|
| 40 |
+
temperature: float = 0.8
|
| 41 |
+
do_sample: bool = True
|
| 42 |
+
repetition_penalty: float = 1.005
|
| 43 |
+
|
| 44 |
+
|
| 45 |
+
@torch.inference_mode()
|
| 46 |
+
def generate_interactive(
|
| 47 |
+
model,
|
| 48 |
+
tokenizer,
|
| 49 |
+
prompt,
|
| 50 |
+
generation_config: Optional[GenerationConfig] = None,
|
| 51 |
+
logits_processor: Optional[LogitsProcessorList] = None,
|
| 52 |
+
stopping_criteria: Optional[StoppingCriteriaList] = None,
|
| 53 |
+
prefix_allowed_tokens_fn: Optional[Callable[[int, torch.Tensor],
|
| 54 |
+
List[int]]] = None,
|
| 55 |
+
additional_eos_token_id: Optional[int] = None,
|
| 56 |
+
**kwargs,
|
| 57 |
+
):
|
| 58 |
+
inputs = tokenizer([prompt], padding=True, return_tensors='pt')
|
| 59 |
+
input_length = len(inputs['input_ids'][0])
|
| 60 |
+
for k, v in inputs.items():
|
| 61 |
+
inputs[k] = v.cuda()
|
| 62 |
+
input_ids = inputs['input_ids']
|
| 63 |
+
_, input_ids_seq_length = input_ids.shape[0], input_ids.shape[-1]
|
| 64 |
+
if generation_config is None:
|
| 65 |
+
generation_config = model.generation_config
|
| 66 |
+
generation_config = copy.deepcopy(generation_config)
|
| 67 |
+
model_kwargs = generation_config.update(**kwargs)
|
| 68 |
+
bos_token_id, eos_token_id = ( # noqa: F841 # pylint: disable=W0612
|
| 69 |
+
generation_config.bos_token_id,
|
| 70 |
+
generation_config.eos_token_id,
|
| 71 |
+
)
|
| 72 |
+
if isinstance(eos_token_id, int):
|
| 73 |
+
eos_token_id = [eos_token_id]
|
| 74 |
+
if additional_eos_token_id is not None:
|
| 75 |
+
eos_token_id.append(additional_eos_token_id)
|
| 76 |
+
has_default_max_length = kwargs.get(
|
| 77 |
+
'max_length') is None and generation_config.max_length is not None
|
| 78 |
+
if has_default_max_length and generation_config.max_new_tokens is None:
|
| 79 |
+
warnings.warn(
|
| 80 |
+
f"Using 'max_length''s default \
|
| 81 |
+
({repr(generation_config.max_length)}) \
|
| 82 |
+
to control the generation length. "
|
| 83 |
+
'This behaviour is deprecated and will be removed from the \
|
| 84 |
+
config in v5 of Transformers -- we'
|
| 85 |
+
' recommend using `max_new_tokens` to control the maximum \
|
| 86 |
+
length of the generation.',
|
| 87 |
+
UserWarning,
|
| 88 |
+
)
|
| 89 |
+
elif generation_config.max_new_tokens is not None:
|
| 90 |
+
generation_config.max_length = generation_config.max_new_tokens + \
|
| 91 |
+
input_ids_seq_length
|
| 92 |
+
if not has_default_max_length:
|
| 93 |
+
logger.warn( # pylint: disable=W4902
|
| 94 |
+
f"Both 'max_new_tokens' (={generation_config.max_new_tokens}) "
|
| 95 |
+
f"and 'max_length'(={generation_config.max_length}) seem to "
|
| 96 |
+
"have been set. 'max_new_tokens' will take precedence. "
|
| 97 |
+
'Please refer to the documentation for more information. '
|
| 98 |
+
'(https://huggingface.co/docs/transformers/main/'
|
| 99 |
+
'en/main_classes/text_generation)',
|
| 100 |
+
UserWarning,
|
| 101 |
+
)
|
| 102 |
+
|
| 103 |
+
if input_ids_seq_length >= generation_config.max_length:
|
| 104 |
+
input_ids_string = 'input_ids'
|
| 105 |
+
logger.warning(
|
| 106 |
+
f'Input length of {input_ids_string} is {input_ids_seq_length}, '
|
| 107 |
+
f"but 'max_length' is set to {generation_config.max_length}. "
|
| 108 |
+
'This can lead to unexpected behavior. You should consider'
|
| 109 |
+
" increasing 'max_new_tokens'.")
|
| 110 |
+
|
| 111 |
+
# 2. Set generation parameters if not already defined
|
| 112 |
+
logits_processor = logits_processor if logits_processor is not None \
|
| 113 |
+
else LogitsProcessorList()
|
| 114 |
+
stopping_criteria = stopping_criteria if stopping_criteria is not None \
|
| 115 |
+
else StoppingCriteriaList()
|
| 116 |
+
|
| 117 |
+
logits_processor = model._get_logits_processor(
|
| 118 |
+
generation_config=generation_config,
|
| 119 |
+
input_ids_seq_length=input_ids_seq_length,
|
| 120 |
+
encoder_input_ids=input_ids,
|
| 121 |
+
prefix_allowed_tokens_fn=prefix_allowed_tokens_fn,
|
| 122 |
+
logits_processor=logits_processor,
|
| 123 |
+
)
|
| 124 |
+
|
| 125 |
+
stopping_criteria = model._get_stopping_criteria(
|
| 126 |
+
generation_config=generation_config,
|
| 127 |
+
stopping_criteria=stopping_criteria)
|
| 128 |
+
logits_warper = model._get_logits_warper(generation_config)
|
| 129 |
+
|
| 130 |
+
unfinished_sequences = input_ids.new(input_ids.shape[0]).fill_(1)
|
| 131 |
+
scores = None
|
| 132 |
+
while True:
|
| 133 |
+
model_inputs = model.prepare_inputs_for_generation(
|
| 134 |
+
input_ids, **model_kwargs)
|
| 135 |
+
# forward pass to get next token
|
| 136 |
+
outputs = model(
|
| 137 |
+
**model_inputs,
|
| 138 |
+
return_dict=True,
|
| 139 |
+
output_attentions=False,
|
| 140 |
+
output_hidden_states=False,
|
| 141 |
+
)
|
| 142 |
+
|
| 143 |
+
next_token_logits = outputs.logits[:, -1, :]
|
| 144 |
+
|
| 145 |
+
# pre-process distribution
|
| 146 |
+
next_token_scores = logits_processor(input_ids, next_token_logits)
|
| 147 |
+
next_token_scores = logits_warper(input_ids, next_token_scores)
|
| 148 |
+
|
| 149 |
+
# sample
|
| 150 |
+
probs = nn.functional.softmax(next_token_scores, dim=-1)
|
| 151 |
+
if generation_config.do_sample:
|
| 152 |
+
next_tokens = torch.multinomial(probs, num_samples=1).squeeze(1)
|
| 153 |
+
else:
|
| 154 |
+
next_tokens = torch.argmax(probs, dim=-1)
|
| 155 |
+
|
| 156 |
+
# update generated ids, model inputs, and length for next step
|
| 157 |
+
input_ids = torch.cat([input_ids, next_tokens[:, None]], dim=-1)
|
| 158 |
+
model_kwargs = model._update_model_kwargs_for_generation(
|
| 159 |
+
outputs, model_kwargs, is_encoder_decoder=False)
|
| 160 |
+
unfinished_sequences = unfinished_sequences.mul(
|
| 161 |
+
(min(next_tokens != i for i in eos_token_id)).long())
|
| 162 |
+
|
| 163 |
+
output_token_ids = input_ids[0].cpu().tolist()
|
| 164 |
+
output_token_ids = output_token_ids[input_length:]
|
| 165 |
+
for each_eos_token_id in eos_token_id:
|
| 166 |
+
if output_token_ids[-1] == each_eos_token_id:
|
| 167 |
+
output_token_ids = output_token_ids[:-1]
|
| 168 |
+
response = tokenizer.decode(output_token_ids)
|
| 169 |
+
|
| 170 |
+
yield response
|
| 171 |
+
# stop when each sentence is finished
|
| 172 |
+
# or if we exceed the maximum length
|
| 173 |
+
if unfinished_sequences.max() == 0 or stopping_criteria(
|
| 174 |
+
input_ids, scores):
|
| 175 |
+
break
|
| 176 |
+
|
| 177 |
+
|
| 178 |
+
def on_btn_click():
|
| 179 |
+
del st.session_state.messages
|
| 180 |
+
|
| 181 |
+
|
| 182 |
+
@st.cache_resource
|
| 183 |
+
def load_model():
|
| 184 |
+
model = (AutoModelForCausalLM.from_pretrained(
|
| 185 |
+
model_name_or_path,
|
| 186 |
+
trust_remote_code=True).to(torch.bfloat16).cuda())
|
| 187 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name_or_path,
|
| 188 |
+
trust_remote_code=True)
|
| 189 |
+
return model, tokenizer
|
| 190 |
+
|
| 191 |
+
|
| 192 |
+
def prepare_generation_config():
|
| 193 |
+
with st.sidebar:
|
| 194 |
+
max_length = st.slider('Max Length',
|
| 195 |
+
min_value=8,
|
| 196 |
+
max_value=32768,
|
| 197 |
+
value=32768)
|
| 198 |
+
top_p = st.slider('Top P', 0.0, 1.0, 0.8, step=0.01)
|
| 199 |
+
temperature = st.slider('Temperature', 0.0, 1.0, 0.7, step=0.01)
|
| 200 |
+
st.button('Clear Chat History', on_click=on_btn_click)
|
| 201 |
+
|
| 202 |
+
generation_config = GenerationConfig(max_length=max_length,
|
| 203 |
+
top_p=top_p,
|
| 204 |
+
temperature=temperature)
|
| 205 |
+
|
| 206 |
+
return generation_config
|
| 207 |
+
|
| 208 |
+
|
| 209 |
+
user_prompt = '<|im_start|>user\n{user}<|im_end|>\n'
|
| 210 |
+
robot_prompt = '<|im_start|>assistant\n{robot}<|im_end|>\n'
|
| 211 |
+
cur_query_prompt = '<|im_start|>user\n{user}<|im_end|>\n\
|
| 212 |
+
<|im_start|>assistant\n'
|
| 213 |
+
|
| 214 |
+
|
| 215 |
+
def combine_history(prompt):
|
| 216 |
+
messages = st.session_state.messages
|
| 217 |
+
meta_instruction = ('You are a helpful, honest, '
|
| 218 |
+
'and harmless AI assistant.')
|
| 219 |
+
total_prompt = f'<s><|im_start|>system\n{meta_instruction}<|im_end|>\n'
|
| 220 |
+
for message in messages:
|
| 221 |
+
cur_content = message['content']
|
| 222 |
+
if message['role'] == 'user':
|
| 223 |
+
cur_prompt = user_prompt.format(user=cur_content)
|
| 224 |
+
elif message['role'] == 'robot':
|
| 225 |
+
cur_prompt = robot_prompt.format(robot=cur_content)
|
| 226 |
+
else:
|
| 227 |
+
raise RuntimeError
|
| 228 |
+
total_prompt += cur_prompt
|
| 229 |
+
total_prompt = total_prompt + cur_query_prompt.format(user=prompt)
|
| 230 |
+
return total_prompt
|
| 231 |
+
|
| 232 |
+
|
| 233 |
+
def main():
|
| 234 |
+
st.title('internlm2_5-7b-chat-assistant')
|
| 235 |
+
|
| 236 |
+
# torch.cuda.empty_cache()
|
| 237 |
+
print('load model begin.')
|
| 238 |
+
model, tokenizer = load_model()
|
| 239 |
+
print('load model end.')
|
| 240 |
+
|
| 241 |
+
generation_config = prepare_generation_config()
|
| 242 |
+
|
| 243 |
+
# Initialize chat history
|
| 244 |
+
if 'messages' not in st.session_state:
|
| 245 |
+
st.session_state.messages = []
|
| 246 |
+
|
| 247 |
+
# Display chat messages from history on app rerun
|
| 248 |
+
for message in st.session_state.messages:
|
| 249 |
+
with st.chat_message(message['role'], avatar=message.get('avatar')):
|
| 250 |
+
st.markdown(message['content'])
|
| 251 |
+
|
| 252 |
+
# Accept user input
|
| 253 |
+
if prompt := st.chat_input('What is up?'):
|
| 254 |
+
# Display user message in chat message container
|
| 255 |
+
|
| 256 |
+
with st.chat_message('user', avatar='user'):
|
| 257 |
+
|
| 258 |
+
st.markdown(prompt)
|
| 259 |
+
real_prompt = combine_history(prompt)
|
| 260 |
+
# Add user message to chat history
|
| 261 |
+
st.session_state.messages.append({
|
| 262 |
+
'role': 'user',
|
| 263 |
+
'content': prompt,
|
| 264 |
+
'avatar': 'user'
|
| 265 |
+
})
|
| 266 |
+
|
| 267 |
+
with st.chat_message('robot', avatar='assistant'):
|
| 268 |
+
|
| 269 |
+
message_placeholder = st.empty()
|
| 270 |
+
for cur_response in generate_interactive(
|
| 271 |
+
model=model,
|
| 272 |
+
tokenizer=tokenizer,
|
| 273 |
+
prompt=real_prompt,
|
| 274 |
+
additional_eos_token_id=92542,
|
| 275 |
+
device='cuda:0',
|
| 276 |
+
**asdict(generation_config),
|
| 277 |
+
):
|
| 278 |
+
# Display robot response in chat message container
|
| 279 |
+
message_placeholder.markdown(cur_response + '▌')
|
| 280 |
+
message_placeholder.markdown(cur_response)
|
| 281 |
+
# Add robot response to chat history
|
| 282 |
+
st.session_state.messages.append({
|
| 283 |
+
'role': 'robot',
|
| 284 |
+
'content': cur_response, # pylint: disable=undefined-loop-variable
|
| 285 |
+
'avatar': 'assistant',
|
| 286 |
+
})
|
| 287 |
+
torch.cuda.empty_cache()
|
| 288 |
+
|
| 289 |
+
|
| 290 |
+
if __name__ == '__main__':
|
| 291 |
+
main()
|