Spaces:
Sleeping
Sleeping
| from transformers import BlipProcessor, BlipForConditionalGeneration, AutoTokenizer, AutoModelForSeq2SeqLM | |
| class ModelLoader: | |
| def __init__(self): | |
| self.blip_processor = BlipProcessor.from_pretrained("Salesforce/blip-image-captioning-base") | |
| self.blip_model = BlipForConditionalGeneration.from_pretrained('Salesforce/blip-image-captioning-base') | |
| self.topic_generator_processor = AutoTokenizer.from_pretrained("google/flan-t5-large") | |
| self.topic_generator_model = AutoModelForSeq2SeqLM.from_pretrained("google/flan-t5-large") | |
| def load_blip(self): | |
| model = self.blip_model | |
| processor = self.blip_processor | |
| model.eval() | |
| return model, processor | |
| def load_topic_generator(self): | |
| model = self.topic_generator_model | |
| processor = self.topic_generator_processor | |
| model.eval() | |
| return model, processor | |
| # testing the model | |
| model_load = ModelLoader() | |
| blip_models, blip_processors = model_load.blip_model() | |
| topic_generator_models, topic_generator_processors = model_load.load_topic_generator() | |