Spaces:
Sleeping
Sleeping
File size: 15,473 Bytes
19f420a 3cfc6a1 19f420a f6146b6 19f420a 8054642 19f420a f6146b6 19f420a 8054642 19f420a f6146b6 19f420a 8054642 3cfc6a1 8054642 3cfc6a1 19f420a f6146b6 8054642 f6146b6 8054642 3cfc6a1 8054642 f6146b6 8054642 f6146b6 8054642 f6146b6 8054642 f37553c 19f420a 8054642 3cfc6a1 19f420a f6146b6 8054642 3cfc6a1 87a985c 8054642 f6146b6 8054642 3cfc6a1 f6146b6 8054642 f6146b6 f37553c 8054642 f6146b6 8054642 f37553c 8054642 f6146b6 8054642 f37553c 8054642 19f420a 8054642 f37553c 19f420a 8054642 f37553c 8054642 f37553c 19f420a 8054642 3cfc6a1 f37553c 8054642 f37553c 8054642 3cfc6a1 8054642 f37553c 3cfc6a1 8054642 f6146b6 8054642 f37553c 8054642 f6146b6 8054642 f6146b6 f37553c f6146b6 8054642 f6146b6 8054642 f6146b6 19f420a 8054642 f37553c 19f420a f6146b6 8054642 ea86682 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 |
import cv2
import mediapipe as mp
import numpy as np
import math
from src.detection.base_processor import BaseProcessor
# --- Helper Functions (Unchanged) ---
def calculate_ear(eye_landmarks, frame_shape):
"""Calculates the Eye Aspect Ratio for a single eye."""
# Note: frame_shape is (height, width)
coords = np.array([(lm.x * frame_shape[1], lm.y * frame_shape[0]) for lm in eye_landmarks])
v1 = np.linalg.norm(coords[1] - coords[5])
v2 = np.linalg.norm(coords[2] - coords[4])
h1 = np.linalg.norm(coords[0] - coords[3])
return (v1 + v2) / (2.0 * h1) if h1 > 0 else 0.0
def calculate_mar(mouth_landmarks, frame_shape):
"""Calculates the Mouth Aspect Ratio."""
coords = np.array([(lm.x * frame_shape[1], lm.y * frame_shape[0]) for lm in mouth_landmarks])
v1 = np.linalg.norm(coords[1] - coords[7])
v2 = np.linalg.norm(coords[2] - coords[6])
v3 = np.linalg.norm(coords[3] - coords[5])
h1 = np.linalg.norm(coords[0] - coords[4])
return (v1 + v2 + v3) / (2.0 * h1) if h1 > 0 else 0.0
class GeometricProcessor(BaseProcessor):
# Landmark indices for eyes and mouth
L_EYE = [362, 385, 387, 263, 373, 380]
R_EYE = [33, 160, 158, 133, 153, 144]
MOUTH = [61, 291, 39, 181, 0, 17, 84, 178]
# Landmark indices for Head Pose Estimation
HEAD_POSE_LANDMARKS = [1, 152, 263, 33, 287, 57] # Nose tip, Chin, Left eye left corner, Right eye right corner, Left mouth corner, Right mouth corner
def __init__(self, config):
self.settings = config['geometric_settings']
self.face_mesh = mp.solutions.face_mesh.FaceMesh(
max_num_faces=1,
refine_landmarks=False, # Set to True for more detailed landmarks around eyes/lips, at a slight performance cost
min_detection_confidence=0.5,
min_tracking_confidence=0.5)
self.downscale_factor = self.settings.get('downscale_factor', 0.35)
self.default_skip = max(1, self.settings.get("skip_frames", 2))
# --- FIX: Caching states for efficiency ---
self.frame_counter = 0
# Initialize with safe defaults
self.last_indicators = {"drowsiness_level": "Initializing...", "lighting": "Good", "details": {}}
self.last_landmarks = None
self.last_drawn_frame = None # Cache the fully drawn frame
# Drowsiness event counters
self.counters = { "eye_closure": 0, "yawning": 0, "head_nod": 0, "looking_away": 0 }
# Pre-allocated buffer for solvePnP
self.zeros_4x1 = np.zeros((4, 1), np.float32)
def process_frame(self, frame):
self.frame_counter += 1
# --- FIX: More efficient frame skipping ---
# Adaptive skipping: process more frequently if drowsiness is detected.
last_level = self.last_indicators.get("drowsiness_level", "Awake")
skip_n = 1 if last_level != "Awake" else self.default_skip
if self.frame_counter % skip_n != 0:
# If we have a cached frame, return it to avoid re-drawing.
if self.last_drawn_frame is not None:
return self.last_drawn_frame, self.last_indicators
# Fallback if the first frame was skipped (unlikely but safe)
else:
return frame.copy(), self.last_indicators
# --- CORE FRAME PROCESSING ---
original_frame = frame.copy()
h_orig, w_orig, _ = original_frame.shape
# Optimization: Downscale frame for faster processing
small_frame = cv2.resize(original_frame, (0, 0), fx=self.downscale_factor, fy=self.downscale_factor, interpolation=cv2.INTER_AREA)
h, w, _ = small_frame.shape
# All processing is done on the `small_frame` for speed.
gray = cv2.cvtColor(small_frame, cv2.COLOR_BGR2GRAY)
brightness = np.mean(gray)
drowsiness_indicators = {"drowsiness_level": "Awake", "lighting": "Good", "details": {}}
face_landmarks_data = None
if brightness < self.settings['low_light_thresh']:
drowsiness_indicators["lighting"] = "Low"
else:
# Convert the SMALL frame to RGB for MediaPipe
img_rgb = cv2.cvtColor(small_frame, cv2.COLOR_BGR2RGB)
img_rgb.flags.writeable = False # Performance enhancement
results = self.face_mesh.process(img_rgb)
img_rgb.flags.writeable = True
if results.multi_face_landmarks:
face_landmarks_data = results.multi_face_landmarks[0]
landmarks = face_landmarks_data.landmark
score = 0
weights = self.settings['indicator_weights']
# --- Drowsiness Calculations (on small frame dimensions 'h', 'w') ---
ear_left = calculate_ear([landmarks[i] for i in self.L_EYE],(h,w))
ear_right = calculate_ear([landmarks[i] for i in self.R_EYE],(h,w))
ear = (ear_left + ear_right) / 2.0
if ear < self.settings['eye_ar_thresh']: self.counters['eye_closure']+=1
else: self.counters['eye_closure']=0
if self.counters['eye_closure'] >= self.settings['eye_ar_consec_frames']: score += weights['eye_closure']
mar = calculate_mar([landmarks[i] for i in self.MOUTH], (h, w))
if mar > self.settings['yawn_mar_thresh']: self.counters['yawning']+=1
else: self.counters['yawning']=0
if self.counters['yawning'] >= self.settings['yawn_consec_frames']: score += weights['yawning']
# --- Head Pose Estimation (on small frame dimensions 'h', 'w') ---
face_3d_model = np.array([
[0.0, 0.0, 0.0], # Nose tip
[0.0, -330.0, -65.0], # Chin
[-225.0, 170.0, -135.0], # Left eye left corner
[225.0, 170.0, -135.0], # Right eye right corner
[-150.0, -150.0, -125.0], # Left Mouth corner
[150.0, -150.0, -125.0] # Right mouth corner
], dtype=np.float32)
face_2d_points = np.array([(landmarks[i].x * w, landmarks[i].y * h) for i in self.HEAD_POSE_LANDMARKS], dtype=np.float32)
cam_matrix = np.array([[w, 0, w/2], [0, w, h/2], [0, 0, 1]], dtype=np.float32)
_, rvec, _ = cv2.solvePnP(face_3d_model, face_2d_points, cam_matrix, self.zeros_4x1, flags=cv2.SOLVEPNP_EPNP)
rmat, _ = cv2.Rodrigues(rvec)
angles, _, _, _, _, _ = cv2.RQDecomp3x3(rmat)
pitch, yaw = angles[0], angles[1]
if pitch > self.settings['head_nod_thresh']: self.counters['head_nod']+=1
else: self.counters['head_nod']=0
if self.counters['head_nod'] >= self.settings['head_pose_consec_frames']: score += weights['head_nod']
if abs(yaw) > self.settings['head_look_away_thresh']: self.counters['looking_away']+=1
else: self.counters['looking_away']=0
if self.counters['looking_away'] >= self.settings['head_pose_consec_frames']: score += weights['looking_away']
# Determine final drowsiness level based on score
levels = self.settings['drowsiness_levels']
if score >= levels['very_drowsy_threshold']:
drowsiness_indicators['drowsiness_level'] = "Very Drowsy"
elif score >= levels['slightly_drowsy_threshold']:
drowsiness_indicators['drowsiness_level'] = "Slightly Drowsy"
drowsiness_indicators['details']['Score'] = score
# --- Update state for next frame (skipped or processed) ---
self.last_indicators = drowsiness_indicators
self.last_landmarks = face_landmarks_data
# --- Draw visuals on the ORIGINAL frame for high-quality output ---
processed_frame = self.draw_visuals(original_frame, drowsiness_indicators, face_landmarks_data)
# --- FIX: Cache the newly drawn frame ---
self.last_drawn_frame = processed_frame
# --- FIX: Return only the two values expected by the Gradio app ---
return processed_frame, drowsiness_indicators
def draw_visuals(self, frame, indicators, landmarks_data=None):
"""Helper function to draw all visualizations on the frame."""
h, w, _ = frame.shape
level = indicators['drowsiness_level']
score_val = indicators.get("details", {}).get("Score", 0)
color = (0, 255, 0) # Green for Awake
if indicators['lighting'] == "Low":
color = (0, 165, 255) # Orange
cv2.putText(frame, "LOW LIGHT", (w // 2 - 120, h // 2), cv2.FONT_HERSHEY_SIMPLEX, 2, color, 3, cv2.LINE_AA)
elif level == "Slightly Drowsy": color = (0, 255, 255) # Yellow
elif level == "Very Drowsy": color = (0, 0, 255) # Red
# Draw landmarks if they were detected
if landmarks_data:
landmarks = landmarks_data.landmark
eye_mouth_landmarks_indices = self.L_EYE + self.R_EYE + self.MOUTH
for idx in eye_mouth_landmarks_indices:
lm = landmarks[idx]
# Scale landmark coordinates to the full-sized frame
x, y = int(lm.x * w), int(lm.y * h)
cv2.circle(frame, (x, y), 2, (0, 255, 0), -1)
cv2.rectangle(frame, (0, 0), (w - 1, h - 1), color, 10)
status_text = f"Status: {level} (Score: {score_val:.2f})"
cv2.putText(frame, status_text, (20, 40), cv2.FONT_HERSHEY_SIMPLEX, 1, (255, 255, 255), 2, cv2.LINE_AA)
return frame
def analyse_frame(self, frame):
# self.frame_counter += 1
# --- FIX: More efficient frame skipping ---
# # Adaptive skipping: process more frequently if drowsiness is detected.
# last_level = self.last_indicators.get("drowsiness_level", "Awake")
# skip_n = 1 if last_level != "Awake" else self.default_skip
# if self.frame_counter % skip_n != 0:
# # If we have a cached frame, return it to avoid re-drawing.
# if self.last_drawn_frame is not None:
# return self.last_drawn_frame, self.last_indicators
# # Fallback if the first frame was skipped (unlikely but safe)
# else:
# return frame.copy(), self.last_indicators
# --- CORE FRAME PROCESSING ---
original_frame = frame.copy()
h_orig, w_orig, _ = original_frame.shape
# Optimization: Downscale frame for faster processing
small_frame = cv2.resize(original_frame, (0, 0), fx=self.downscale_factor, fy=self.downscale_factor, interpolation=cv2.INTER_AREA)
h, w, _ = small_frame.shape
# All processing is done on the `small_frame` for speed.
gray = cv2.cvtColor(small_frame, cv2.COLOR_BGR2GRAY)
brightness = np.mean(gray)
drowsiness_indicators = {"drowsiness_level": "Awake", "lighting": "Good", "details": {}}
face_landmarks_data = None
if brightness < self.settings['low_light_thresh']:
drowsiness_indicators["lighting"] = "Low"
else:
# Convert the SMALL frame to RGB for MediaPipe
img_rgb = cv2.cvtColor(small_frame, cv2.COLOR_BGR2RGB)
img_rgb.flags.writeable = False # Performance enhancement
results = self.face_mesh.process(img_rgb)
img_rgb.flags.writeable = True
if results.multi_face_landmarks:
face_landmarks_data = results.multi_face_landmarks[0]
landmarks = face_landmarks_data.landmark
score = 0
weights = self.settings['indicator_weights']
# --- Drowsiness Calculations (on small frame dimensions 'h', 'w') ---
ear_left = calculate_ear([landmarks[i] for i in self.L_EYE],(h,w))
ear_right = calculate_ear([landmarks[i] for i in self.R_EYE],(h,w))
ear = (ear_left + ear_right) / 2.0
if ear < self.settings['eye_ar_thresh']: self.counters['eye_closure']+=1
else: self.counters['eye_closure']=0
if self.counters['eye_closure'] >= self.settings['eye_ar_consec_frames']: score += weights['eye_closure']
mar = calculate_mar([landmarks[i] for i in self.MOUTH], (h, w))
if mar > self.settings['yawn_mar_thresh']: self.counters['yawning']+=1
else: self.counters['yawning']=0
if self.counters['yawning'] >= self.settings['yawn_consec_frames']: score += weights['yawning']
# --- Head Pose Estimation (on small frame dimensions 'h', 'w') ---
face_3d_model = np.array([
[0.0, 0.0, 0.0], # Nose tip
[0.0, -330.0, -65.0], # Chin
[-225.0, 170.0, -135.0], # Left eye left corner
[225.0, 170.0, -135.0], # Right eye right corner
[-150.0, -150.0, -125.0], # Left Mouth corner
[150.0, -150.0, -125.0] # Right mouth corner
], dtype=np.float32)
face_2d_points = np.array([(landmarks[i].x * w, landmarks[i].y * h) for i in self.HEAD_POSE_LANDMARKS], dtype=np.float32)
cam_matrix = np.array([[w, 0, w/2], [0, w, h/2], [0, 0, 1]], dtype=np.float32)
_, rvec, _ = cv2.solvePnP(face_3d_model, face_2d_points, cam_matrix, self.zeros_4x1, flags=cv2.SOLVEPNP_EPNP)
rmat, _ = cv2.Rodrigues(rvec)
angles, _, _, _, _, _ = cv2.RQDecomp3x3(rmat)
pitch, yaw = angles[0], angles[1]
if pitch > self.settings['head_nod_thresh']: self.counters['head_nod']+=1
else: self.counters['head_nod']=0
if self.counters['head_nod'] >= self.settings['head_pose_consec_frames']: score += weights['head_nod']
if abs(yaw) > self.settings['head_look_away_thresh']: self.counters['looking_away']+=1
else: self.counters['looking_away']=0
if self.counters['looking_away'] >= self.settings['head_pose_consec_frames']: score += weights['looking_away']
# Determine final drowsiness level based on score
levels = self.settings['drowsiness_levels']
if score >= levels['very_drowsy_threshold']:
drowsiness_indicators['drowsiness_level'] = "Very Drowsy"
elif score >= levels['slightly_drowsy_threshold']:
drowsiness_indicators['drowsiness_level'] = "Slightly Drowsy"
drowsiness_indicators['details']['Score'] = score
# --- Update state for next frame (skipped or processed) ---
self.last_indicators = drowsiness_indicators
self.last_landmarks = face_landmarks_data
# --- Draw visuals on the ORIGINAL frame for high-quality output ---
# processed_frame = self.draw_visuals(original_frame, drowsiness_indicators, face_landmarks_data)
# --- FIX: Cache the newly drawn frame ---
# self.last_drawn_frame = processed_frame
# --- FIX: Return only the two values expected by the Gradio app ---
return drowsiness_indicators |