drive-paddy / app.py
Testys's picture
Update app.py
ba6a8ea verified
raw
history blame
6.26 kB
# app_gradio.py
import gradio as gr
import numpy as np
import torch
import os, yaml, soundfile as sf
from dotenv import load_dotenv
from threading import Thread
# --- TTS & AI Imports ---
from parler_tts import ParlerTTSForConditionalGeneration
from transformers import AutoTokenizer, AutoFeatureExtractor
from streamer import ParlerTTSStreamer # local file
from src.detection.factory import get_detector
from src.alerting.alert_system import get_alerter
# ──────────────────────────────────────────────────────────
# CONFIG & BACKEND SET-UP
# ──────────────────────────────────────────────────────────
load_dotenv()
with open("config.yaml", "r") as f:
config = yaml.safe_load(f)
secrets = {"gemini_api_key": os.getenv("GEMINI_API_KEY")}
print("Initializing detector and alerter …")
detector = get_detector(config)
alerter = get_alerter(config, secrets["gemini_api_key"])
print("Backend ready.")
# ──────────────────────────────────────────────────────────
# TTS MODEL (Parler-TTS mini)
# ──────────────────────────────────────────────────────────
device = "cuda:0" if torch.cuda.is_available() else "cpu"
if device == "cpu":
print("\n⚠️ Running TTS on CPU will be slow; only β€˜Very Drowsy’ alerts will use it.\n")
model_dtype = torch.float16 if device != "cpu" else torch.float32
repo_id = "parler-tts/parler_tts_mini_v0.1"
print("Loading Parler-TTS …")
model = ParlerTTSForConditionalGeneration.from_pretrained(repo_id,
torch_dtype=model_dtype).to(device)
tokenizer = AutoTokenizer.from_pretrained(repo_id)
feature_extractor = AutoFeatureExtractor.from_pretrained(repo_id)
print("TTS loaded.")
# ──────────────────────────────────────────────────────────
# AUDIO STREAMER
# ──────────────────────────────────────────────────────────
def stream_alert_audio(text_prompt: str):
"""Yields (sampling_rate, np.ndarray) chunks for Gradio streaming."""
sampling_rate = model.config.sampling_rate
voice_desc = "Jenny is a female speaker with a clear and urgent voice."
prompt_ids = tokenizer(text_prompt, return_tensors="pt").input_ids.to(device)
desc_ids = tokenizer(voice_desc, return_tensors="pt").input_ids.to(device)
streamer = ParlerTTSStreamer(model, device, play_steps=int(sampling_rate * 2.0))
gen_kwargs = dict(
input_ids=desc_ids,
prompt_input_ids=prompt_ids,
streamer=streamer,
do_sample=True,
temperature=1.0,
repetition_penalty=1.2,
)
thread = Thread(target=model.generate, kwargs=gen_kwargs, daemon=True)
try:
thread.start()
for chunk in streamer:
yield (sampling_rate, chunk)
finally:
thread.join(timeout=0.1)
alerter.reset_alert()
# ──────────────────────────────────────────────────────────
# FRAME PROCESSOR
# ──────────────────────────────────────────────────────────
def process_live_frame(frame):
if frame is None:
return np.zeros((480, 640, 3), np.uint8), "Status: Inactive", None
processed, indicators, _ = detector.process_frame(frame)
level = indicators.get("drowsiness_level", "Awake")
lighting = indicators.get("lighting", "Good")
score = indicators.get("details", {}).get("Score", 0)
status_txt = f"Lighting: {lighting}\n"
status_txt += ("Detection paused due to low light."
if lighting == "Low"
else f"Status: {level}\nScore: {score:.2f}")
audio_out = None
if level != "Awake" and lighting != "Low":
payload = alerter.trigger_alert(level=level)
if payload:
# Static file path β†’ bytes, Dynamic Gemini path β†’ str
if isinstance(payload, bytes):
# Return raw bytes (Gradio accepts bytes for .wav / .mp3)
audio_out = payload
elif isinstance(payload, str):
audio_out = stream_alert_audio(payload)
return processed, status_txt, audio_out
# ──────────────────────────────────────────────────────────
# GRADIO UI
# ──────────────────────────────────────────────────────────
with gr.Blocks(theme=gr.themes.Default(primary_hue="blue")) as app:
gr.Markdown("# πŸš— Drive Paddy – Drowsiness Detection")
gr.Markdown("Live detection with real-time voice alerts.")
with gr.Row():
with gr.Column(scale=2):
webcam = gr.Image(sources=["webcam"], streaming=True,
label="Live Camera Feed")
with gr.Column(scale=1):
processed_img = gr.Image(label="Processed Feed")
status_box = gr.Textbox(label="Live Status", lines=3, interactive=False)
alert_audio = gr.Audio(label="Alert",
autoplay=True,
streaming=True,
height=40)
webcam.stream(
fn=process_live_frame,
inputs=webcam,
outputs=[processed_img, status_box, alert_audio],
)
if __name__ == "__main__":
app.launch(debug=True)