Spaces:
Sleeping
Sleeping
# app_gradio.py | |
import gradio as gr | |
import numpy as np | |
import torch | |
import os | |
import yaml | |
from dotenv import load_dotenv | |
from threading import Thread | |
from gradio_webrtc import WebRTC | |
from twilio.rest import Client | |
# --- TTS & AI Imports --- | |
from parler_tts import ParlerTTSForConditionalGeneration | |
from transformers import AutoTokenizer, AutoFeatureExtractor | |
from streamer import ParlerTTSStreamer | |
# --- Local Project Imports --- | |
from src.detection.factory import get_detector | |
from src.alerting.alert_system import get_alerter | |
# --- Load Configuration and Environment Variables --- | |
load_dotenv() | |
config_path = 'config.yaml' | |
with open(config_path, 'r') as f: | |
config = yaml.safe_load(f) | |
secrets = {"gemini_api_key": os.getenv("GEMINI_API_KEY")} | |
# --- Initialize Backend Components --- | |
print("Initializing detector and alerter...") | |
detector = get_detector(config) | |
alerter = get_alerter(config, secrets["gemini_api_key"]) | |
print("Initialization complete.") | |
# --- Twilio TURN Server Setup --- | |
account_sid = os.environ.get("TURN_USERNAME") | |
auth_token = os.environ.get("TURN_CREDENTIAL") | |
rtc_configuration = None | |
if account_sid and auth_token: | |
try: | |
client = Client(account_sid, auth_token) | |
token = client.tokens.create() | |
rtc_configuration = {"iceServers": token.ice_servers} | |
print("Twilio TURN server configured successfully.") | |
except Exception as e: | |
print(f"Warning: Failed to create Twilio token. Using public STUN server. Error: {e}") | |
# Fallback to a public STUN server if Twilio fails or is not configured | |
if rtc_configuration is None: | |
print("Using public STun server.") | |
rtc_configuration = {"iceServers": [{"urls": ["stun:stun.l.google.com:19302"]}]} | |
# --- Parler-TTS Model Setup --- | |
print("Loading Parler-TTS model...") | |
device = "cuda:0" if torch.cuda.is_available() else "cpu" | |
if device == "cpu": | |
print("\nWARNING: Running Parler-TTS on a CPU is slow. A GPU is highly recommended.\n") | |
torch_dtype = torch.float16 if device != "cpu" else torch.float32 | |
repo_id = "parler-tts/parler_tts_mini_v0.1" | |
model = ParlerTTSForConditionalGeneration.from_pretrained(repo_id, torch_dtype=torch_dtype).to(device) | |
tokenizer = AutoTokenizer.from_pretrained(repo_id) | |
feature_extractor = AutoFeatureExtractor.from_pretrained(repo_id) | |
print("Parler-TTS model loaded.") | |
# --- Audio Streaming Generator --- | |
def stream_alert_audio(text_prompt): | |
"""A generator that streams audio chunks for a given text prompt.""" | |
sampling_rate = model.config.sampling_rate | |
description = "A female speaker with a clear and urgent voice." | |
prompt_ids = tokenizer(text_prompt, return_tensors="pt").input_ids.to(device) | |
description_ids = tokenizer(description, return_tensors="pt").input_ids.to(device) | |
streamer = ParlerTTSStreamer(model, device, play_steps=int(sampling_rate * 2.0)) | |
generation_kwargs = dict(input_ids=description_ids, prompt_input_ids=prompt_ids, streamer=streamer, do_sample=True, temperature=1.0, repetition_penalty=1.2) | |
thread = Thread(target=model.generate, kwargs=generation_kwargs) | |
try: | |
thread.start() | |
print(f"Audio stream started for: '{text_prompt}'") | |
for new_audio_chunk in streamer: | |
yield (sampling_rate, new_audio_chunk) | |
finally: | |
print("Audio stream finished. Resetting alerter state.") | |
alerter.reset_alert() | |
# --- Decoupled Processing Functions --- | |
def process_video_and_update_state(frame_dict: dict, state: dict): | |
""" | |
HIGH-FREQUENCY LOOP: Processes video, updates shared state, and returns the processed frame. | |
This function's speed directly impacts video latency. | |
""" | |
if not frame_dict or "video" not in frame_dict or frame_dict["video"] is None: | |
return np.zeros((480, 640, 3), dtype=np.uint8), state | |
frame = frame_dict["video"] | |
processed_frame, indicators, _ = detector.process_frame(frame) | |
state['indicators'] = indicators | |
return processed_frame, state | |
def update_ui_from_state(state: dict): | |
""" | |
LOW-FREQUENCY LOOP: Reads from state to update status text and trigger audio. | |
This runs independently of the video loop. | |
""" | |
indicators = state.get('indicators', {}) | |
drowsiness_level = indicators.get("drowsiness_level", "Awake") | |
lighting = indicators.get("lighting", "Good") | |
score = indicators.get("details", {}).get("Score", 0) | |
status_text = f"Lighting: {lighting}\nStatus: {drowsiness_level}\nScore: {score:.2f}" | |
if lighting == "Low": | |
status_text = "Lighting: Low\nDetection paused due to low light." | |
audio_output = None | |
if drowsiness_level != "Awake": | |
alert_text = alerter.trigger_alert(level=drowsiness_level) | |
if alert_text: | |
audio_output = stream_alert_audio(alert_text) | |
return status_text, audio_output | |
# --- Gradio UI Definition --- | |
with gr.Blocks(theme=gr.themes.Default(primary_hue="blue")) as app: | |
gr.Markdown("# π Drive Paddy - Drowsiness Detection (WebRTC)") | |
gr.Markdown("Low-latency video processing via WebRTC, with decoupled UI updates for smooth performance.") | |
# Shared state object to pass data between the two processing loops | |
shared_state = gr.State(value={'indicators': {}}) | |
with gr.Row(): | |
with gr.Column(scale=2): | |
# This WebRTC component is now correctly used for both input and output of the video stream. | |
webcam = WebRTC(label="Live Camera Feed", rtc_configuration=rtc_configuration) | |
with gr.Column(scale=1): | |
status_output = gr.Textbox(label="Live Status", lines=3, interactive=False) | |
audio_alert_output = gr.Audio(label="Alert System", autoplay=True, visible=False, streaming=True) | |
# LOOP 1: High-Frequency Video Stream (as fast as possible) | |
# This takes video from the webcam, processes it, and sends it right back. | |
webcam.stream( | |
fn=process_video_and_update_state, | |
inputs=[webcam, shared_state], | |
outputs=[webcam, shared_state], | |
) | |
# LOOP 2: Low-Frequency UI Updates (4 times per second) | |
# This runs on a timer, reads the shared state, and updates the other UI elements. | |
app.load( | |
fn=update_ui_from_state, | |
inputs=[shared_state], | |
outputs=[status_output, audio_alert_output], | |
every=0.25 # Run this function every 250 milliseconds | |
) | |
if __name__ == "__main__": | |
print("Starting Drive Paddy WebRTC Application...") | |
app.launch(debug=True) | |