Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -2,153 +2,158 @@
|
|
2 |
import gradio as gr
|
3 |
import numpy as np
|
4 |
import torch
|
|
|
5 |
import os
|
6 |
import yaml
|
7 |
from dotenv import load_dotenv
|
8 |
from threading import Thread
|
9 |
-
from gradio_webrtc import WebRTC
|
10 |
-
from twilio.rest import Client
|
11 |
|
12 |
# --- TTS & AI Imports ---
|
13 |
from parler_tts import ParlerTTSForConditionalGeneration
|
14 |
-
from transformers import AutoTokenizer, AutoFeatureExtractor
|
15 |
-
from streamer import ParlerTTSStreamer
|
16 |
|
17 |
-
# --- Local Project Imports ---
|
18 |
from src.detection.factory import get_detector
|
19 |
from src.alerting.alert_system import get_alerter
|
20 |
|
21 |
# --- Load Configuration and Environment Variables ---
|
|
|
22 |
load_dotenv()
|
23 |
config_path = 'config.yaml'
|
24 |
with open(config_path, 'r') as f:
|
25 |
config = yaml.safe_load(f)
|
26 |
-
secrets = {
|
|
|
|
|
27 |
|
28 |
# --- Initialize Backend Components ---
|
29 |
print("Initializing detector and alerter...")
|
30 |
detector = get_detector(config)
|
31 |
alerter = get_alerter(config, secrets["gemini_api_key"])
|
32 |
-
print("Initialization complete.")
|
33 |
|
34 |
-
# ---
|
35 |
-
|
36 |
-
auth_token = os.environ.get("TURN_CREDENTIAL")
|
37 |
-
rtc_configuration = None
|
38 |
-
if account_sid and auth_token:
|
39 |
-
try:
|
40 |
-
client = Client(account_sid, auth_token)
|
41 |
-
token = client.tokens.create()
|
42 |
-
rtc_configuration = {"iceServers": token.ice_servers}
|
43 |
-
print("Twilio TURN server configured successfully.")
|
44 |
-
except Exception as e:
|
45 |
-
print(f"Warning: Failed to create Twilio token. Using public STUN server. Error: {e}")
|
46 |
-
# Fallback to a public STUN server if Twilio fails or is not configured
|
47 |
-
if rtc_configuration is None:
|
48 |
-
print("Using public STun server.")
|
49 |
-
rtc_configuration = {"iceServers": [{"urls": ["stun:stun.l.google.com:19302"]}]}
|
50 |
-
|
51 |
-
|
52 |
-
# --- Parler-TTS Model Setup ---
|
53 |
-
print("Loading Parler-TTS model...")
|
54 |
device = "cuda:0" if torch.cuda.is_available() else "cpu"
|
55 |
if device == "cpu":
|
56 |
-
print("\nWARNING: Running Parler-TTS on a CPU
|
57 |
torch_dtype = torch.float16 if device != "cpu" else torch.float32
|
58 |
|
|
|
|
|
59 |
repo_id = "parler-tts/parler_tts_mini_v0.1"
|
60 |
model = ParlerTTSForConditionalGeneration.from_pretrained(repo_id, torch_dtype=torch_dtype).to(device)
|
61 |
tokenizer = AutoTokenizer.from_pretrained(repo_id)
|
62 |
feature_extractor = AutoFeatureExtractor.from_pretrained(repo_id)
|
63 |
print("Parler-TTS model loaded.")
|
64 |
|
65 |
-
# --- Audio Streaming Generator ---
|
66 |
def stream_alert_audio(text_prompt):
|
67 |
-
"""
|
|
|
|
|
|
|
68 |
sampling_rate = model.config.sampling_rate
|
69 |
-
description = "A female speaker with a clear and urgent voice."
|
|
|
70 |
prompt_ids = tokenizer(text_prompt, return_tensors="pt").input_ids.to(device)
|
71 |
description_ids = tokenizer(description, return_tensors="pt").input_ids.to(device)
|
|
|
|
|
72 |
streamer = ParlerTTSStreamer(model, device, play_steps=int(sampling_rate * 2.0))
|
73 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
74 |
thread = Thread(target=model.generate, kwargs=generation_kwargs)
|
|
|
75 |
try:
|
76 |
thread.start()
|
77 |
print(f"Audio stream started for: '{text_prompt}'")
|
|
|
78 |
for new_audio_chunk in streamer:
|
79 |
yield (sampling_rate, new_audio_chunk)
|
80 |
finally:
|
|
|
|
|
81 |
print("Audio stream finished. Resetting alerter state.")
|
82 |
alerter.reset_alert()
|
83 |
-
|
84 |
-
# ---
|
85 |
-
|
86 |
-
def process_video_and_update_state(frame_dict: dict, state: dict):
|
87 |
"""
|
88 |
-
|
89 |
-
|
90 |
"""
|
91 |
-
if
|
92 |
-
return np.zeros((480, 640, 3), dtype=np.uint8),
|
93 |
|
94 |
-
frame = frame_dict["video"]
|
95 |
processed_frame, indicators, _ = detector.process_frame(frame)
|
96 |
-
state['indicators'] = indicators
|
97 |
-
return processed_frame, state
|
98 |
-
|
99 |
-
def update_ui_from_state(state: dict):
|
100 |
-
"""
|
101 |
-
LOW-FREQUENCY LOOP: Reads from state to update status text and trigger audio.
|
102 |
-
This runs independently of the video loop.
|
103 |
-
"""
|
104 |
-
indicators = state.get('indicators', {})
|
105 |
drowsiness_level = indicators.get("drowsiness_level", "Awake")
|
106 |
lighting = indicators.get("lighting", "Good")
|
107 |
score = indicators.get("details", {}).get("Score", 0)
|
108 |
|
109 |
-
|
|
|
110 |
if lighting == "Low":
|
111 |
-
status_text
|
|
|
|
|
112 |
|
|
|
113 |
audio_output = None
|
114 |
if drowsiness_level != "Awake":
|
|
|
115 |
alert_text = alerter.trigger_alert(level=drowsiness_level)
|
116 |
if alert_text:
|
|
|
|
|
117 |
audio_output = stream_alert_audio(alert_text)
|
118 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
119 |
|
120 |
# --- Gradio UI Definition ---
|
121 |
with gr.Blocks(theme=gr.themes.Default(primary_hue="blue")) as app:
|
122 |
-
gr.Markdown("# 🚗 Drive Paddy - Drowsiness Detection (
|
123 |
-
gr.Markdown("
|
124 |
-
|
125 |
-
# Shared state object to pass data between the two processing loops
|
126 |
-
shared_state = gr.State(value={'indicators': {}})
|
127 |
|
128 |
with gr.Row():
|
129 |
with gr.Column(scale=2):
|
130 |
-
|
131 |
-
webcam = WebRTC(label="Live Camera Feed", rtc_configuration=rtc_configuration)
|
132 |
with gr.Column(scale=1):
|
|
|
133 |
status_output = gr.Textbox(label="Live Status", lines=3, interactive=False)
|
134 |
-
audio_alert_output = gr.Audio(label="Alert System", autoplay=True, visible=False, streaming=True)
|
135 |
|
136 |
-
|
137 |
-
|
138 |
-
|
139 |
-
|
140 |
-
|
141 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
142 |
)
|
143 |
|
144 |
-
# LOOP 2: Low-Frequency UI Updates (4 times per second)
|
145 |
-
# This runs on a timer, reads the shared state, and updates the other UI elements.
|
146 |
-
app.load(
|
147 |
-
fn=update_ui_from_state,
|
148 |
-
inputs=[shared_state],
|
149 |
-
outputs=[status_output, audio_alert_output],
|
150 |
-
)
|
151 |
|
|
|
152 |
if __name__ == "__main__":
|
153 |
-
|
154 |
-
app.launch(debug=True)
|
|
|
2 |
import gradio as gr
|
3 |
import numpy as np
|
4 |
import torch
|
5 |
+
import soundfile as sf
|
6 |
import os
|
7 |
import yaml
|
8 |
from dotenv import load_dotenv
|
9 |
from threading import Thread
|
|
|
|
|
10 |
|
11 |
# --- TTS & AI Imports ---
|
12 |
from parler_tts import ParlerTTSForConditionalGeneration
|
13 |
+
from transformers import AutoTokenizer, AutoFeatureExtractor, set_seed
|
14 |
+
from streamer import ParlerTTSStreamer # Make sure streamer.py is available
|
15 |
|
|
|
16 |
from src.detection.factory import get_detector
|
17 |
from src.alerting.alert_system import get_alerter
|
18 |
|
19 |
# --- Load Configuration and Environment Variables ---
|
20 |
+
# This part is the same as our Streamlit app
|
21 |
load_dotenv()
|
22 |
config_path = 'config.yaml'
|
23 |
with open(config_path, 'r') as f:
|
24 |
config = yaml.safe_load(f)
|
25 |
+
secrets = {
|
26 |
+
"gemini_api_key": os.getenv("GEMINI_API_KEY"),
|
27 |
+
}
|
28 |
|
29 |
# --- Initialize Backend Components ---
|
30 |
print("Initializing detector and alerter...")
|
31 |
detector = get_detector(config)
|
32 |
alerter = get_alerter(config, secrets["gemini_api_key"])
|
33 |
+
print("Initialization complete. Launching UI...")
|
34 |
|
35 |
+
# --- Parler-TTS Model Setup (Requires GPU) ---
|
36 |
+
print("Loading Parler-TTS model. This may take a moment...")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
37 |
device = "cuda:0" if torch.cuda.is_available() else "cpu"
|
38 |
if device == "cpu":
|
39 |
+
print("\nWARNING: Running Parler-TTS on a CPU will be extremely slow. A GPU is highly recommended.\n")
|
40 |
torch_dtype = torch.float16 if device != "cpu" else torch.float32
|
41 |
|
42 |
+
|
43 |
+
# Using a smaller, faster model suitable for real-time alerts
|
44 |
repo_id = "parler-tts/parler_tts_mini_v0.1"
|
45 |
model = ParlerTTSForConditionalGeneration.from_pretrained(repo_id, torch_dtype=torch_dtype).to(device)
|
46 |
tokenizer = AutoTokenizer.from_pretrained(repo_id)
|
47 |
feature_extractor = AutoFeatureExtractor.from_pretrained(repo_id)
|
48 |
print("Parler-TTS model loaded.")
|
49 |
|
50 |
+
# --- Audio Streaming Generator Function ---
|
51 |
def stream_alert_audio(text_prompt):
|
52 |
+
"""
|
53 |
+
A generator function that yields audio chunks for a given text prompt.
|
54 |
+
This is the core of the streaming implementation.
|
55 |
+
"""
|
56 |
sampling_rate = model.config.sampling_rate
|
57 |
+
description = "Jenny is A female speaker with a clear and urgent voice." # Voice prompt for TTS
|
58 |
+
|
59 |
prompt_ids = tokenizer(text_prompt, return_tensors="pt").input_ids.to(device)
|
60 |
description_ids = tokenizer(description, return_tensors="pt").input_ids.to(device)
|
61 |
+
|
62 |
+
# Setup the streamer
|
63 |
streamer = ParlerTTSStreamer(model, device, play_steps=int(sampling_rate * 2.0))
|
64 |
+
|
65 |
+
generation_kwargs = dict(
|
66 |
+
input_ids=description_ids,
|
67 |
+
prompt_input_ids=prompt_ids,
|
68 |
+
streamer=streamer,
|
69 |
+
do_sample=True,
|
70 |
+
temperature=1.0, # Increase for more vocal variety
|
71 |
+
repetition_penalty=1.2,
|
72 |
+
)
|
73 |
+
|
74 |
+
# Run generation in a separate thread to not block the UI
|
75 |
thread = Thread(target=model.generate, kwargs=generation_kwargs)
|
76 |
+
|
77 |
try:
|
78 |
thread.start()
|
79 |
print(f"Audio stream started for: '{text_prompt}'")
|
80 |
+
# Yield audio chunks as they become available
|
81 |
for new_audio_chunk in streamer:
|
82 |
yield (sampling_rate, new_audio_chunk)
|
83 |
finally:
|
84 |
+
# CRITICAL: This block runs after the generator is exhausted (audio finishes)
|
85 |
+
# We reset the alerter state so that a new alert can be triggered later.
|
86 |
print("Audio stream finished. Resetting alerter state.")
|
87 |
alerter.reset_alert()
|
88 |
+
|
89 |
+
# --- Main Webcam Processing Function ---
|
90 |
+
def process_live_frame(frame):
|
|
|
91 |
"""
|
92 |
+
Processes each webcam frame, performs drowsiness detection, and
|
93 |
+
returns a generator for audio streaming when an alert is triggered.
|
94 |
"""
|
95 |
+
if frame is None:
|
96 |
+
return np.zeros((480, 640, 3), dtype=np.uint8), "Status: Inactive", None
|
97 |
|
|
|
98 |
processed_frame, indicators, _ = detector.process_frame(frame)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
99 |
drowsiness_level = indicators.get("drowsiness_level", "Awake")
|
100 |
lighting = indicators.get("lighting", "Good")
|
101 |
score = indicators.get("details", {}).get("Score", 0)
|
102 |
|
103 |
+
# Build status text
|
104 |
+
status_text = f"Lighting: {lighting}\n"
|
105 |
if lighting == "Low":
|
106 |
+
status_text += "Detection paused due to low light."
|
107 |
+
else:
|
108 |
+
status_text += f"Status: {drowsiness_level}\nScore: {score:.2f}"
|
109 |
|
110 |
+
# --- Alert Trigger Logic ---
|
111 |
audio_output = None
|
112 |
if drowsiness_level != "Awake":
|
113 |
+
# alerter.trigger_alert() returns the alert TEXT if not on cooldown, otherwise None.
|
114 |
alert_text = alerter.trigger_alert(level=drowsiness_level)
|
115 |
if alert_text:
|
116 |
+
# If we got text, it means we can start an alert.
|
117 |
+
# We return the generator function itself. Gradio will handle it.
|
118 |
audio_output = stream_alert_audio(alert_text)
|
119 |
+
|
120 |
+
else;
|
121 |
+
alert_text = "WAKE UP"
|
122 |
+
audio_output = stream_alert_audio(alert_text)
|
123 |
+
|
124 |
+
# On subsequent frames where the user is drowsy, trigger_alert() will return None
|
125 |
+
# due to the cooldown, preventing a new stream from starting, which is what we want.
|
126 |
+
|
127 |
+
return processed_frame, status_text, audio_output
|
128 |
+
|
129 |
|
130 |
# --- Gradio UI Definition ---
|
131 |
with gr.Blocks(theme=gr.themes.Default(primary_hue="blue")) as app:
|
132 |
+
gr.Markdown("# 🚗 Drive Paddy - Drowsiness Detection (Streaming)")
|
133 |
+
gr.Markdown("Live drowsiness detection with real-time, streaming voice alerts.")
|
|
|
|
|
|
|
134 |
|
135 |
with gr.Row():
|
136 |
with gr.Column(scale=2):
|
137 |
+
webcam_input = gr.Image(sources=["webcam"], streaming=True, label="Live Camera Feed")
|
|
|
138 |
with gr.Column(scale=1):
|
139 |
+
processed_output = gr.Image(label="Processed Feed")
|
140 |
status_output = gr.Textbox(label="Live Status", lines=3, interactive=False)
|
|
|
141 |
|
142 |
+
# --- KEY CHANGE: The Audio component now uses streaming=True ---
|
143 |
+
audio_alert_output = gr.Audio(
|
144 |
+
label="Alert System",
|
145 |
+
autoplay=True,
|
146 |
+
visible=False, # Hide the player controls
|
147 |
+
streaming=True
|
148 |
+
)
|
149 |
+
|
150 |
+
webcam_input.stream(
|
151 |
+
fn=process_live_frame,
|
152 |
+
inputs=[webcam_input],
|
153 |
+
outputs=[processed_output, status_output, audio_alert_output]
|
154 |
)
|
155 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
156 |
|
157 |
+
# --- Launch the App ---
|
158 |
if __name__ == "__main__":
|
159 |
+
app.launch(debug=True)
|
|