Testys commited on
Commit
42e8aa3
·
verified ·
1 Parent(s): 89a2fb1

Update src/detection/strategies/cnn_model.py

Browse files
Files changed (1) hide show
  1. src/detection/strategies/cnn_model.py +29 -36
src/detection/strategies/cnn_model.py CHANGED
@@ -5,26 +5,24 @@ import torch
5
  import torchvision.transforms as transforms
6
  from torchvision.models import efficientnet_b7
7
  import cv2
8
- import dlib
9
  from PIL import Image
10
  import os
11
 
12
  class CnnProcessor(BaseProcessor):
13
  """
14
  Drowsiness detection using a pre-trained EfficientNet-B7 model.
 
15
  """
16
  def __init__(self, config):
17
  self.settings = config['cnn_model_settings']
18
  self.model_path = self.settings['model_path']
19
  self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
20
 
21
- # Initialize dlib for face detection
22
- self.face_detector = dlib.get_frontal_face_detector()
23
 
24
- # Load the model
25
  self.model = self._load_model()
26
 
27
- # Define image transformations
28
  self.transform = transforms.Compose([
29
  transforms.Resize((224, 224)),
30
  transforms.ToTensor(),
@@ -35,66 +33,61 @@ class CnnProcessor(BaseProcessor):
35
  """Loads the EfficientNet-B7 model and custom weights."""
36
  if not os.path.exists(self.model_path):
37
  print(f"Error: Model file not found at {self.model_path}")
38
- print("Please run 'python download_model.py' first.")
39
  return None
40
 
41
  try:
42
- # Initialize the model structure
43
  model = efficientnet_b7()
44
- # Modify the final classifier layer to match the number of output classes (e.g., 2: drowsy, not_drowsy)
45
  num_ftrs = model.classifier[1].in_features
46
- model.classifier[1] = torch.nn.Linear(num_ftrs, 2) # Assuming 2 output classes
47
-
48
- # Load the saved weights
49
  model.load_state_dict(torch.load(self.model_path, map_location=self.device))
50
  model.to(self.device)
51
- model.eval() # Set the model to evaluation mode
52
  print(f"CNN Model '{self.model_path}' loaded successfully on {self.device}.")
53
  return model
54
  except Exception as e:
55
  print(f"Error loading CNN model: {e}")
56
  return None
57
 
58
- def process_frame(self, frame):
59
  """
60
- Processes a frame to detect drowsiness using the CNN model.
61
  """
62
- if self.model is None:
63
  return frame, {"cnn_prediction": False}
64
 
65
- gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)
66
- faces = self.face_detector(gray)
67
  is_drowsy_prediction = False
 
 
 
 
 
 
 
 
 
68
 
69
- for face in faces:
70
- x1, y1, x2, y2 = face.left(), face.top(), face.right(), face.bottom()
71
-
72
- # Crop the face from the frame
73
- face_crop = frame[y1:y2, x1:x2]
74
-
75
- # Ensure the crop is valid before processing
76
- if face_crop.size == 0:
77
- continue
78
-
79
- # Convert to PIL Image and apply transformations
80
  pil_image = Image.fromarray(cv2.cvtColor(face_crop, cv2.COLOR_BGR2RGB))
81
  image_tensor = self.transform(pil_image).unsqueeze(0).to(self.device)
82
 
83
- # Perform inference
84
  with torch.no_grad():
85
  outputs = self.model(image_tensor)
86
  _, preds = torch.max(outputs, 1)
87
- # Assuming class 1 is 'drowsy' and class 0 is 'not_drowsy'
88
- print(preds)
89
- if preds.item() == 1:
90
  is_drowsy_prediction = True
91
 
92
- # Draw bounding box for visualization
93
  cv2.rectangle(frame, (x1, y1), (x2, y2), (255, 255, 0), 2)
94
  label = "Drowsy" if is_drowsy_prediction else "Awake"
95
  cv2.putText(frame, f"CNN: {label}", (x1, y1 - 10), cv2.FONT_HERSHEY_SIMPLEX, 0.7, (255, 255, 0), 2)
96
 
97
- # Process only the first detected face
98
- break
99
-
100
  return frame, {"cnn_prediction": is_drowsy_prediction}
 
5
  import torchvision.transforms as transforms
6
  from torchvision.models import efficientnet_b7
7
  import cv2
 
8
  from PIL import Image
9
  import os
10
 
11
  class CnnProcessor(BaseProcessor):
12
  """
13
  Drowsiness detection using a pre-trained EfficientNet-B7 model.
14
+ This version receives face landmarks from another processor instead of using dlib.
15
  """
16
  def __init__(self, config):
17
  self.settings = config['cnn_model_settings']
18
  self.model_path = self.settings['model_path']
19
  self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
20
 
21
+ # dlib is no longer needed.
22
+ # self.face_detector = dlib.get_frontal_face_detector()
23
 
 
24
  self.model = self._load_model()
25
 
 
26
  self.transform = transforms.Compose([
27
  transforms.Resize((224, 224)),
28
  transforms.ToTensor(),
 
33
  """Loads the EfficientNet-B7 model and custom weights."""
34
  if not os.path.exists(self.model_path):
35
  print(f"Error: Model file not found at {self.model_path}")
 
36
  return None
37
 
38
  try:
 
39
  model = efficientnet_b7()
 
40
  num_ftrs = model.classifier[1].in_features
41
+ model.classifier[1] = torch.nn.Linear(num_ftrs, 2)
 
 
42
  model.load_state_dict(torch.load(self.model_path, map_location=self.device))
43
  model.to(self.device)
44
+ model.eval()
45
  print(f"CNN Model '{self.model_path}' loaded successfully on {self.device}.")
46
  return model
47
  except Exception as e:
48
  print(f"Error loading CNN model: {e}")
49
  return None
50
 
51
+ def process_frame(self, frame, face_landmarks=None):
52
  """
53
+ Processes a frame using the CNN model with pre-supplied landmarks.
54
  """
55
+ if self.model is None or face_landmarks is None:
56
  return frame, {"cnn_prediction": False}
57
 
 
 
58
  is_drowsy_prediction = False
59
+ h, w, _ = frame.shape
60
+
61
+ landmarks = face_landmarks[0].landmark
62
+
63
+ # Calculate bounding box from landmarks
64
+ x_coords = [lm.x * w for lm in landmarks]
65
+ y_coords = [lm.y * h for lm in landmarks]
66
+ x1, y1 = int(min(x_coords)), int(min(y_coords))
67
+ x2, y2 = int(max(x_coords)), int(max(y_coords))
68
 
69
+ # Add some padding to the bounding box
70
+ padding = 10
71
+ x1 = max(0, x1 - padding)
72
+ y1 = max(0, y1 - padding)
73
+ x2 = min(w, x2 + padding)
74
+ y2 = min(h, y2 + padding)
75
+
76
+ # Crop the face
77
+ face_crop = frame[y1:y2, x1:x2]
78
+
79
+ if face_crop.size > 0:
80
  pil_image = Image.fromarray(cv2.cvtColor(face_crop, cv2.COLOR_BGR2RGB))
81
  image_tensor = self.transform(pil_image).unsqueeze(0).to(self.device)
82
 
 
83
  with torch.no_grad():
84
  outputs = self.model(image_tensor)
85
  _, preds = torch.max(outputs, 1)
86
+ if preds.item() == 1: # Assuming class 1 is 'drowsy'
 
 
87
  is_drowsy_prediction = True
88
 
 
89
  cv2.rectangle(frame, (x1, y1), (x2, y2), (255, 255, 0), 2)
90
  label = "Drowsy" if is_drowsy_prediction else "Awake"
91
  cv2.putText(frame, f"CNN: {label}", (x1, y1 - 10), cv2.FONT_HERSHEY_SIMPLEX, 0.7, (255, 255, 0), 2)
92
 
 
 
 
93
  return frame, {"cnn_prediction": is_drowsy_prediction}