Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -136,6 +136,58 @@ def process_live_frame(frame):
|
|
136 |
return processed, status_txt, None
|
137 |
|
138 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
139 |
# βββββββββββββββββββββββββββββ UI Definition
|
140 |
def create_readme_tab():
|
141 |
"""Creates the content for the 'About' tab."""
|
@@ -215,11 +267,36 @@ def create_detection_tab():
|
|
215 |
outputs=[out_img, out_text, out_audio] # The output now targets the placeholder
|
216 |
)
|
217 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
218 |
with gr.Blocks(title="π Drive Paddy β Drowsiness Detection", theme=gr.themes.Soft()) as app:
|
219 |
gr.Markdown("# π **Drive Paddy**")
|
220 |
with gr.Tabs():
|
221 |
with gr.TabItem("Live Detection"):
|
222 |
create_detection_tab()
|
|
|
|
|
223 |
with gr.TabItem("About this App"):
|
224 |
create_readme_tab()
|
225 |
|
|
|
136 |
return processed, status_txt, None
|
137 |
|
138 |
|
139 |
+
# Constants for the video experiment
|
140 |
+
VIDEO_FPS = 30.0
|
141 |
+
CHUNK_SIZE_SECONDS = 2
|
142 |
+
CHUNK_FRAME_COUNT = int(VIDEO_FPS * CHUNK_SIZE_SECONDS)
|
143 |
+
TEMP_VIDEO_FILE = "temp_video_chunk.mp4"
|
144 |
+
|
145 |
+
def process_video_chunk(frame, frame_buffer):
|
146 |
+
"""
|
147 |
+
Processes a single frame, adds it to a buffer, and encodes a video chunk
|
148 |
+
when the buffer is full. The alert system remains real-time.
|
149 |
+
"""
|
150 |
+
if frame is None:
|
151 |
+
return None, "Status: Inactive", None, [] # Return empty buffer
|
152 |
+
|
153 |
+
# --- Real-time detection and alerting (This is not delayed) ---
|
154 |
+
try:
|
155 |
+
processed_frame, indic = detector.process_frame(frame)
|
156 |
+
except Exception as e:
|
157 |
+
logging.error(f"Error processing frame: {e}")
|
158 |
+
processed_frame = np.zeros_like(frame)
|
159 |
+
indic = {"drowsiness_level": "Error", "lighting": "Unknown", "details": {"Score": 0.0}}
|
160 |
+
|
161 |
+
level = indic.get("drowsiness_level", "Awake")
|
162 |
+
lighting = indic.get("lighting", "Good")
|
163 |
+
score = indic.get("details", {}).get("Score", 0.0)
|
164 |
+
status_txt = f"Lighting: {lighting}\nStatus: {level}\nScore: {score:.2f}"
|
165 |
+
|
166 |
+
audio_payload = alert_manager.trigger_alert(level, lighting)
|
167 |
+
audio_out = gr.Audio(value=audio_payload, autoplay=True) if audio_payload else None
|
168 |
+
|
169 |
+
# --- Video Buffering Logic ---
|
170 |
+
frame_buffer.append(processed_frame)
|
171 |
+
|
172 |
+
video_out = None # No video output until the chunk is ready
|
173 |
+
if len(frame_buffer) >= CHUNK_FRAME_COUNT:
|
174 |
+
logging.info(f"Buffer full. Encoding {len(frame_buffer)} frames to video chunk...")
|
175 |
+
# Encode the buffer to a video file
|
176 |
+
h, w, _ = frame_buffer[0].shape
|
177 |
+
fourcc = cv2.VideoWriter_fourcc(*'mp4v')
|
178 |
+
writer = cv2.VideoWriter(TEMP_VIDEO_FILE, fourcc, VIDEO_FPS, (w, h))
|
179 |
+
for f in frame_buffer:
|
180 |
+
writer.write(f)
|
181 |
+
writer.release()
|
182 |
+
|
183 |
+
video_out = TEMP_VIDEO_FILE # Set the output to the new video file path
|
184 |
+
frame_buffer = [] # Clear the buffer for the next chunk
|
185 |
+
logging.info("Encoding complete. Sending video to frontend.")
|
186 |
+
|
187 |
+
# Note: Status and Audio are returned on every frame for real-time feedback
|
188 |
+
return video_out, status_txt, audio_out, frame_buffer
|
189 |
+
|
190 |
+
|
191 |
# βββββββββββββββββββββββββββββ UI Definition
|
192 |
def create_readme_tab():
|
193 |
"""Creates the content for the 'About' tab."""
|
|
|
267 |
outputs=[out_img, out_text, out_audio] # The output now targets the placeholder
|
268 |
)
|
269 |
|
270 |
+
def create_video_experiment_tab():
|
271 |
+
"""Creates the content for the Video Chunk experiment tab."""
|
272 |
+
with gr.Blocks() as video_tab:
|
273 |
+
gr.Markdown("## π§ͺ Video Output Experiment")
|
274 |
+
gr.Markdown(f"This feed buffers processed frames and outputs them as **{CHUNK_SIZE_SECONDS}-second video chunks**. Notice the trade-off between smoothness and latency. Alerts remain real-time.")
|
275 |
+
with gr.Row():
|
276 |
+
with gr.Column(scale=2):
|
277 |
+
cam_video = gr.Image(sources=["webcam"], streaming=True, label="Live Camera Feed")
|
278 |
+
with gr.Column(scale=1):
|
279 |
+
out_video = gr.Video(label="Processed Video Chunk")
|
280 |
+
out_text_video = gr.Textbox(label="Live Status", lines=3, interactive=False)
|
281 |
+
out_audio_video = gr.Audio(label="Alert", autoplay=True, visible=False)
|
282 |
+
|
283 |
+
# State to hold the buffer of frames between updates
|
284 |
+
frame_buffer_state = gr.State([])
|
285 |
+
|
286 |
+
cam_video.stream(
|
287 |
+
fn=process_video_chunk,
|
288 |
+
inputs=[cam_video, frame_buffer_state],
|
289 |
+
outputs=[out_video, out_text_video, out_audio_video, frame_buffer_state]
|
290 |
+
)
|
291 |
+
return video_tab
|
292 |
+
|
293 |
with gr.Blocks(title="π Drive Paddy β Drowsiness Detection", theme=gr.themes.Soft()) as app:
|
294 |
gr.Markdown("# π **Drive Paddy**")
|
295 |
with gr.Tabs():
|
296 |
with gr.TabItem("Live Detection"):
|
297 |
create_detection_tab()
|
298 |
+
with gr.TabItem("Video Output Experiment"):
|
299 |
+
create_video_experiment_tab()
|
300 |
with gr.TabItem("About this App"):
|
301 |
create_readme_tab()
|
302 |
|