Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,14 +1,18 @@
|
|
1 |
# app_gradio.py
|
2 |
import gradio as gr
|
3 |
import numpy as np
|
|
|
|
|
4 |
import os
|
5 |
import yaml
|
6 |
from dotenv import load_dotenv
|
7 |
-
import
|
8 |
-
|
9 |
-
|
|
|
|
|
|
|
10 |
|
11 |
-
# Correctly import from the drive_paddy package structure
|
12 |
from src.detection.factory import get_detector
|
13 |
from src.alerting.alert_system import get_alerter
|
14 |
|
@@ -28,88 +32,124 @@ detector = get_detector(config)
|
|
28 |
alerter = get_alerter(config, secrets["gemini_api_key"])
|
29 |
print("Initialization complete. Launching UI...")
|
30 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
31 |
|
32 |
-
|
|
|
|
|
|
|
|
|
|
|
33 |
|
34 |
-
# --- Audio
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
40 |
try:
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
|
|
|
|
|
|
|
|
|
|
46 |
|
47 |
-
|
48 |
-
return (sample_rate, data)
|
49 |
-
except Exception as e:
|
50 |
-
print(f"Could not process audio for Gradio: {e}")
|
51 |
-
return None
|
52 |
-
|
53 |
-
|
54 |
def process_live_frame(frame):
|
55 |
"""
|
56 |
-
|
57 |
-
|
58 |
"""
|
59 |
if frame is None:
|
60 |
-
|
61 |
-
blank_image = np.zeros((480, 640, 3), dtype=np.uint8)
|
62 |
-
return blank_image, "Status: Inactive", None
|
63 |
|
64 |
-
# Process the frame using our existing detector
|
65 |
processed_frame, indicators, _ = detector.process_frame(frame)
|
66 |
drowsiness_level = indicators.get("drowsiness_level", "Awake")
|
67 |
lighting = indicators.get("lighting", "Good")
|
68 |
score = indicators.get("details", {}).get("Score", 0)
|
69 |
|
70 |
-
# Build
|
71 |
status_text = f"Lighting: {lighting}\n"
|
72 |
if lighting == "Low":
|
73 |
status_text += "Detection paused due to low light."
|
74 |
else:
|
75 |
status_text += f"Status: {drowsiness_level}\nScore: {score:.2f}"
|
76 |
|
77 |
-
#
|
78 |
audio_output = None
|
79 |
if drowsiness_level != "Awake":
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
-
|
|
|
|
|
|
|
|
|
85 |
|
86 |
-
# Return all the values needed to update the UI
|
87 |
return processed_frame, status_text, audio_output
|
88 |
|
|
|
89 |
# --- Gradio UI Definition ---
|
90 |
-
with gr.Blocks(theme=gr.themes.Default(primary_hue="blue"
|
91 |
-
gr.Markdown("# 🚗 Drive Paddy - Drowsiness Detection (
|
92 |
-
gr.Markdown("
|
93 |
|
94 |
with gr.Row():
|
95 |
-
with gr.Column():
|
96 |
-
# Input: Live webcam feed
|
97 |
webcam_input = gr.Image(sources=["webcam"], streaming=True, label="Live Camera Feed")
|
98 |
-
with gr.Column():
|
99 |
-
# Output 1: Processed video feed
|
100 |
processed_output = gr.Image(label="Processed Feed")
|
101 |
-
# Output 2: Live status text
|
102 |
status_output = gr.Textbox(label="Live Status", lines=3, interactive=False)
|
103 |
-
|
104 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
105 |
|
106 |
-
# Link the input to the processing function and the function to the outputs
|
107 |
webcam_input.stream(
|
108 |
fn=process_live_frame,
|
109 |
inputs=[webcam_input],
|
110 |
outputs=[processed_output, status_output, audio_alert_output]
|
111 |
)
|
112 |
|
|
|
113 |
# --- Launch the App ---
|
114 |
if __name__ == "__main__":
|
115 |
app.launch(debug=True)
|
|
|
1 |
# app_gradio.py
|
2 |
import gradio as gr
|
3 |
import numpy as np
|
4 |
+
import torch
|
5 |
+
import soundfile as sf
|
6 |
import os
|
7 |
import yaml
|
8 |
from dotenv import load_dotenv
|
9 |
+
from threading import Thread
|
10 |
+
|
11 |
+
# --- TTS & AI Imports ---
|
12 |
+
from parler_tts import ParlerTTSForConditionalGeneration
|
13 |
+
from transformers import AutoTokenizer, AutoFeatureExtractor, set_seed
|
14 |
+
from streamer import ParlerTTSStreamer # Make sure streamer.py is available
|
15 |
|
|
|
16 |
from src.detection.factory import get_detector
|
17 |
from src.alerting.alert_system import get_alerter
|
18 |
|
|
|
32 |
alerter = get_alerter(config, secrets["gemini_api_key"])
|
33 |
print("Initialization complete. Launching UI...")
|
34 |
|
35 |
+
# --- Parler-TTS Model Setup (Requires GPU) ---
|
36 |
+
print("Loading Parler-TTS model. This may take a moment...")
|
37 |
+
device = "cuda:0" if torch.cuda.is_available() else "cpu"
|
38 |
+
if device == "cpu":
|
39 |
+
print("\nWARNING: Running Parler-TTS on a CPU will be extremely slow. A GPU is highly recommended.\n")
|
40 |
+
torch_dtype = torch.float16 if device != "cpu" else torch.float32
|
41 |
+
|
42 |
|
43 |
+
# Using a smaller, faster model suitable for real-time alerts
|
44 |
+
repo_id = "parler-tts/parler_tts_mini_v0.1"
|
45 |
+
model = ParlerTTSForConditionalGeneration.from_pretrained(repo_id, torch_dtype=torch_dtype).to(device)
|
46 |
+
tokenizer = AutoTokenizer.from_pretrained(repo_id)
|
47 |
+
feature_extractor = AutoFeatureExtractor.from_pretrained(repo_id)
|
48 |
+
print("Parler-TTS model loaded.")
|
49 |
|
50 |
+
# --- Audio Streaming Generator Function ---
|
51 |
+
def stream_alert_audio(text_prompt):
|
52 |
+
"""
|
53 |
+
A generator function that yields audio chunks for a given text prompt.
|
54 |
+
This is the core of the streaming implementation.
|
55 |
+
"""
|
56 |
+
sampling_rate = model.config.sampling_rate
|
57 |
+
description = "Jenny is A female speaker with a clear and urgent voice." # Voice prompt for TTS
|
58 |
+
|
59 |
+
prompt_ids = tokenizer(text_prompt, return_tensors="pt").input_ids.to(device)
|
60 |
+
description_ids = tokenizer(description, return_tensors="pt").input_ids.to(device)
|
61 |
+
|
62 |
+
# Setup the streamer
|
63 |
+
streamer = ParlerTTSStreamer(model, device, play_steps=int(sampling_rate * 2.0))
|
64 |
+
|
65 |
+
generation_kwargs = dict(
|
66 |
+
input_ids=description_ids,
|
67 |
+
prompt_input_ids=prompt_ids,
|
68 |
+
streamer=streamer,
|
69 |
+
do_sample=True,
|
70 |
+
temperature=1.0, # Increase for more vocal variety
|
71 |
+
repetition_penalty=1.2,
|
72 |
+
)
|
73 |
+
|
74 |
+
# Run generation in a separate thread to not block the UI
|
75 |
+
thread = Thread(target=model.generate, kwargs=generation_kwargs)
|
76 |
+
|
77 |
try:
|
78 |
+
thread.start()
|
79 |
+
print(f"Audio stream started for: '{text_prompt}'")
|
80 |
+
# Yield audio chunks as they become available
|
81 |
+
for new_audio_chunk in streamer:
|
82 |
+
yield (sampling_rate, new_audio_chunk)
|
83 |
+
finally:
|
84 |
+
# CRITICAL: This block runs after the generator is exhausted (audio finishes)
|
85 |
+
# We reset the alerter state so that a new alert can be triggered later.
|
86 |
+
print("Audio stream finished. Resetting alerter state.")
|
87 |
+
alerter.reset_alert()
|
88 |
|
89 |
+
# --- Main Webcam Processing Function ---
|
|
|
|
|
|
|
|
|
|
|
|
|
90 |
def process_live_frame(frame):
|
91 |
"""
|
92 |
+
Processes each webcam frame, performs drowsiness detection, and
|
93 |
+
returns a generator for audio streaming when an alert is triggered.
|
94 |
"""
|
95 |
if frame is None:
|
96 |
+
return np.zeros((480, 640, 3), dtype=np.uint8), "Status: Inactive", None
|
|
|
|
|
97 |
|
|
|
98 |
processed_frame, indicators, _ = detector.process_frame(frame)
|
99 |
drowsiness_level = indicators.get("drowsiness_level", "Awake")
|
100 |
lighting = indicators.get("lighting", "Good")
|
101 |
score = indicators.get("details", {}).get("Score", 0)
|
102 |
|
103 |
+
# Build status text
|
104 |
status_text = f"Lighting: {lighting}\n"
|
105 |
if lighting == "Low":
|
106 |
status_text += "Detection paused due to low light."
|
107 |
else:
|
108 |
status_text += f"Status: {drowsiness_level}\nScore: {score:.2f}"
|
109 |
|
110 |
+
# --- Alert Trigger Logic ---
|
111 |
audio_output = None
|
112 |
if drowsiness_level != "Awake":
|
113 |
+
# alerter.trigger_alert() returns the alert TEXT if not on cooldown, otherwise None.
|
114 |
+
alert_text = alerter.trigger_alert(level=drowsiness_level)
|
115 |
+
if alert_text:
|
116 |
+
# If we got text, it means we can start an alert.
|
117 |
+
# We return the generator function itself. Gradio will handle it.
|
118 |
+
audio_output = stream_alert_audio(alert_text)
|
119 |
+
|
120 |
+
# On subsequent frames where the user is drowsy, trigger_alert() will return None
|
121 |
+
# due to the cooldown, preventing a new stream from starting, which is what we want.
|
122 |
|
|
|
123 |
return processed_frame, status_text, audio_output
|
124 |
|
125 |
+
|
126 |
# --- Gradio UI Definition ---
|
127 |
+
with gr.Blocks(theme=gr.themes.Default(primary_hue="blue")) as app:
|
128 |
+
gr.Markdown("# 🚗 Drive Paddy - Drowsiness Detection (Streaming)")
|
129 |
+
gr.Markdown("Live drowsiness detection with real-time, streaming voice alerts.")
|
130 |
|
131 |
with gr.Row():
|
132 |
+
with gr.Column(scale=2):
|
|
|
133 |
webcam_input = gr.Image(sources=["webcam"], streaming=True, label="Live Camera Feed")
|
134 |
+
with gr.Column(scale=1):
|
|
|
135 |
processed_output = gr.Image(label="Processed Feed")
|
|
|
136 |
status_output = gr.Textbox(label="Live Status", lines=3, interactive=False)
|
137 |
+
|
138 |
+
# --- KEY CHANGE: The Audio component now uses streaming=True ---
|
139 |
+
audio_alert_output = gr.Audio(
|
140 |
+
label="Alert System",
|
141 |
+
autoplay=True,
|
142 |
+
visible=False, # Hide the player controls
|
143 |
+
streaming=True
|
144 |
+
)
|
145 |
|
|
|
146 |
webcam_input.stream(
|
147 |
fn=process_live_frame,
|
148 |
inputs=[webcam_input],
|
149 |
outputs=[processed_output, status_output, audio_alert_output]
|
150 |
)
|
151 |
|
152 |
+
|
153 |
# --- Launch the App ---
|
154 |
if __name__ == "__main__":
|
155 |
app.launch(debug=True)
|