Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -12,13 +12,20 @@ from transformers import AutoTokenizer, AutoFeatureExtractor
|
|
12 |
from streamer import ParlerTTSStreamer # local file
|
13 |
|
14 |
from src.detection.factory import get_detector
|
15 |
-
from src.alerting.alert_system import
|
16 |
|
17 |
# ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
|
18 |
# CONFIG & BACKEND SET-UP
|
19 |
# ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
|
20 |
load_dotenv()
|
21 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
22 |
with open("config.yaml", "r") as f:
|
23 |
config = yaml.safe_load(f)
|
24 |
|
@@ -26,57 +33,13 @@ secrets = {"gemini_api_key": os.getenv("GEMINI_API_KEY")}
|
|
26 |
|
27 |
print("Initializing detector and alerter β¦")
|
28 |
detector = get_detector(config)
|
29 |
-
alerter
|
30 |
-
print("Backend ready.")
|
31 |
-
|
32 |
-
# ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
|
33 |
-
# TTS MODEL (Parler-TTS mini)
|
34 |
-
# ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
|
35 |
-
device = "cuda:0" if torch.cuda.is_available() else "cpu"
|
36 |
-
if device == "cpu":
|
37 |
-
print("\nβ οΈ Running TTS on CPU will be slow; only βVery Drowsyβ alerts will use it.\n")
|
38 |
-
|
39 |
-
model_dtype = torch.float16 if device != "cpu" else torch.float32
|
40 |
-
repo_id = "parler-tts/parler_tts_mini_v0.1"
|
41 |
|
42 |
-
|
43 |
-
|
44 |
-
torch_dtype=model_dtype).to(device)
|
45 |
-
tokenizer = AutoTokenizer.from_pretrained(repo_id)
|
46 |
-
feature_extractor = AutoFeatureExtractor.from_pretrained(repo_id)
|
47 |
-
print("TTS loaded.")
|
48 |
|
49 |
-
|
50 |
-
# AUDIO STREAMER
|
51 |
-
# ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
|
52 |
-
def stream_alert_audio(text_prompt: str):
|
53 |
-
"""Yields (sampling_rate, np.ndarray) chunks for Gradio streaming."""
|
54 |
-
sampling_rate = model.config.sampling_rate
|
55 |
-
voice_desc = "Jenny is a female speaker with a clear and urgent voice."
|
56 |
-
|
57 |
-
prompt_ids = tokenizer(text_prompt, return_tensors="pt").input_ids.to(device)
|
58 |
-
desc_ids = tokenizer(voice_desc, return_tensors="pt").input_ids.to(device)
|
59 |
-
|
60 |
-
streamer = ParlerTTSStreamer(model, device, play_steps=int(sampling_rate * 2.0))
|
61 |
-
|
62 |
-
gen_kwargs = dict(
|
63 |
-
input_ids=desc_ids,
|
64 |
-
prompt_input_ids=prompt_ids,
|
65 |
-
streamer=streamer,
|
66 |
-
do_sample=True,
|
67 |
-
temperature=1.0,
|
68 |
-
repetition_penalty=1.2,
|
69 |
-
)
|
70 |
-
|
71 |
-
thread = Thread(target=model.generate, kwargs=gen_kwargs, daemon=True)
|
72 |
|
73 |
-
try:
|
74 |
-
thread.start()
|
75 |
-
for chunk in streamer:
|
76 |
-
yield (sampling_rate, chunk)
|
77 |
-
finally:
|
78 |
-
thread.join(timeout=0.1)
|
79 |
-
alerter.reset_alert()
|
80 |
|
81 |
# ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
|
82 |
# FRAME PROCESSOR
|
@@ -85,26 +48,28 @@ def process_live_frame(frame):
|
|
85 |
if frame is None:
|
86 |
return np.zeros((480, 640, 3), np.uint8), "Status: Inactive", None
|
87 |
|
|
|
|
|
88 |
processed, indicators, _ = detector.process_frame(frame)
|
89 |
level = indicators.get("drowsiness_level", "Awake")
|
90 |
lighting = indicators.get("lighting", "Good")
|
91 |
score = indicators.get("details", {}).get("Score", 0)
|
92 |
|
|
|
|
|
|
|
93 |
status_txt = f"Lighting: {lighting}\n"
|
94 |
status_txt += ("Detection paused due to low light."
|
95 |
if lighting == "Low"
|
96 |
else f"Status: {level}\nScore: {score:.2f}")
|
97 |
|
|
|
98 |
audio_out = None
|
99 |
if level != "Awake" and lighting != "Low":
|
100 |
-
|
101 |
-
|
102 |
-
|
103 |
-
|
104 |
-
# Return raw bytes (Gradio accepts bytes for .wav / .mp3)
|
105 |
-
audio_out = payload
|
106 |
-
elif isinstance(payload, str):
|
107 |
-
audio_out = stream_alert_audio(payload)
|
108 |
|
109 |
return processed, status_txt, audio_out
|
110 |
|
@@ -133,4 +98,5 @@ with gr.Blocks(theme=gr.themes.Default(primary_hue="blue")) as app:
|
|
133 |
)
|
134 |
|
135 |
if __name__ == "__main__":
|
|
|
136 |
app.launch(debug=True)
|
|
|
12 |
from streamer import ParlerTTSStreamer # local file
|
13 |
|
14 |
from src.detection.factory import get_detector
|
15 |
+
from src.alerting.alert_system import FileAlertSystem
|
16 |
|
17 |
# ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
|
18 |
# CONFIG & BACKEND SET-UP
|
19 |
# ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
|
20 |
load_dotenv()
|
21 |
|
22 |
+
logging.basicConfig(
|
23 |
+
level=logging.INFO,
|
24 |
+
format="%(asctime)s %(levelname)s β %(message)s",
|
25 |
+
datefmt="%H:%M:%S",
|
26 |
+
)
|
27 |
+
|
28 |
+
|
29 |
with open("config.yaml", "r") as f:
|
30 |
config = yaml.safe_load(f)
|
31 |
|
|
|
33 |
|
34 |
print("Initializing detector and alerter β¦")
|
35 |
detector = get_detector(config)
|
36 |
+
alerter = FileAlertSystem(CONFIG)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
37 |
|
38 |
+
if alerter.audio_bytes is None:
|
39 |
+
logging.warning("No alert sound loaded; driver will not hear any audio!")
|
|
|
|
|
|
|
|
|
40 |
|
41 |
+
print("Backend ready.")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
42 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
43 |
|
44 |
# ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
|
45 |
# FRAME PROCESSOR
|
|
|
48 |
if frame is None:
|
49 |
return np.zeros((480, 640, 3), np.uint8), "Status: Inactive", None
|
50 |
|
51 |
+
t0 = time.time()
|
52 |
+
|
53 |
processed, indicators, _ = detector.process_frame(frame)
|
54 |
level = indicators.get("drowsiness_level", "Awake")
|
55 |
lighting = indicators.get("lighting", "Good")
|
56 |
score = indicators.get("details", {}).get("Score", 0)
|
57 |
|
58 |
+
dt_ms = (time.time() - t0) * 1000.0
|
59 |
+
logging.info(f"{dt_ms:6.1f} ms β {lighting:<4} β {level:<14} β score={score:.2f}")
|
60 |
+
|
61 |
status_txt = f"Lighting: {lighting}\n"
|
62 |
status_txt += ("Detection paused due to low light."
|
63 |
if lighting == "Low"
|
64 |
else f"Status: {level}\nScore: {score:.2f}")
|
65 |
|
66 |
+
audio_out = None
|
67 |
audio_out = None
|
68 |
if level != "Awake" and lighting != "Low":
|
69 |
+
audio_bytes = alerter.trigger_alert(level=level)
|
70 |
+
logging.info(f"Printing {audio_bytes}")
|
71 |
+
if audio_bytes:
|
72 |
+
audio_out = audio_bytes
|
|
|
|
|
|
|
|
|
73 |
|
74 |
return processed, status_txt, audio_out
|
75 |
|
|
|
98 |
)
|
99 |
|
100 |
if __name__ == "__main__":
|
101 |
+
logging.info("Launching Gradio app β¦")
|
102 |
app.launch(debug=True)
|