# drive_paddy/detection/strategies/cnn_model.py from src.detection.base_processor import BaseProcessor import numpy as np import torch import torchvision.transforms as transforms from torchvision.models import efficientnet_b7 import cv2 from PIL import Image import os class CnnProcessor(BaseProcessor): """ Drowsiness detection using a pre-trained EfficientNet-B7 model. This version receives face landmarks from another processor instead of using dlib. """ def __init__(self, config): self.settings = config['cnn_model_settings'] self.model_path = self.settings['model_path'] self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu") # dlib is no longer needed. # self.face_detector = dlib.get_frontal_face_detector() self.model = self._load_model() self.transform = transforms.Compose([ transforms.Resize((224, 224)), transforms.ToTensor(), transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]), ]) def _load_model(self): """Loads the EfficientNet-B7 model and custom weights.""" if not os.path.exists(self.model_path): print(f"Error: Model file not found at {self.model_path}") return None try: model = efficientnet_b7() num_ftrs = model.classifier[1].in_features model.classifier[1] = torch.nn.Linear(num_ftrs, 2) model.load_state_dict(torch.load(self.model_path, map_location=self.device)) model.to(self.device) model.eval() print(f"CNN Model '{self.model_path}' loaded successfully on {self.device}.") return model except Exception as e: print(f"Error loading CNN model: {e}") return None def process_frame(self, frame, face_landmarks=None): """ Processes a frame using the CNN model with pre-supplied landmarks. """ if self.model is None or face_landmarks is None: return frame, {"cnn_prediction": False} is_drowsy_prediction = False h, w, _ = frame.shape landmarks = face_landmarks[0].landmark # Calculate bounding box from landmarks x_coords = [lm.x * w for lm in landmarks] y_coords = [lm.y * h for lm in landmarks] x1, y1 = int(min(x_coords)), int(min(y_coords)) x2, y2 = int(max(x_coords)), int(max(y_coords)) # Add some padding to the bounding box padding = 10 x1 = max(0, x1 - padding) y1 = max(0, y1 - padding) x2 = min(w, x2 + padding) y2 = min(h, y2 + padding) # Crop the face face_crop = frame[y1:y2, x1:x2] if face_crop.size > 0: pil_image = Image.fromarray(cv2.cvtColor(face_crop, cv2.COLOR_BGR2RGB)) image_tensor = self.transform(pil_image).unsqueeze(0).to(self.device) with torch.no_grad(): outputs = self.model(image_tensor) _, preds = torch.max(outputs, 1) if preds.item() == 1: # Assuming class 1 is 'drowsy' is_drowsy_prediction = True cv2.rectangle(frame, (x1, y1), (x2, y2), (255, 255, 0), 2) label = "Drowsy" if is_drowsy_prediction else "Awake" cv2.putText(frame, f"CNN: {label}", (x1, y1 - 10), cv2.FONT_HERSHEY_SIMPLEX, 0.7, (255, 255, 0), 2) return frame, {"cnn_prediction": is_drowsy_prediction}