Spaces:
Runtime error
Runtime error
File size: 9,235 Bytes
e65b3b4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 |
import google.generativeai as genai
import numpy as np
from scipy.io import wavfile
import tempfile
import os
from facial_detection import OpenCVFaceDetector, MetricsCalculator, DrowsinessAnalyzer, AlertManager, VisualizationRenderer, StatusLogger
class AIAlertGenerator:
"""Generate AI-powered voice alerts using Gemini"""
def __init__(self, api_key=None):
self.model = None
if api_key:
try:
genai.configure(api_key=api_key)
self.model = genai.GenerativeModel('gemini-1.5-flash')
print("β
Gemini AI initialized for voice alerts")
except Exception as e:
print(f"β οΈ Failed to initialize Gemini: {e}")
def generate_alert_text(self, alert_type, severity="medium"):
"""Generate contextual alert text using Gemini"""
if not self.model:
return self._get_default_alert_text(alert_type, severity)
try:
prompts = {
"EYES_CLOSED": f"Generate a brief, urgent wake-up message (max 12 words) for a drowsy driver whose eyes are closing. Severity: {severity}. Sound caring but firm.",
"YAWNING": f"Generate a brief, gentle alert (max 10 words) for a driver who is yawning frequently. Severity: {severity}. Sound encouraging.",
"HEAD_NOD": f"Generate a brief, firm alert (max 10 words) for a driver whose head is nodding. Severity: {severity}. Sound urgent but supportive.",
"COMBINED": f"Generate a brief, critical alert (max 15 words) for a driver showing multiple drowsiness signs. Severity: {severity}. Sound very urgent but caring."
}
prompt_key = "COMBINED" if isinstance(alert_type, list) and len(alert_type) > 1 else alert_type[0] if isinstance(alert_type, list) else alert_type
prompt = prompts.get(prompt_key, prompts["EYES_CLOSED"])
response = self.model.generate_content(prompt)
alert_text = response.text.strip().replace('"', '').replace("'", "")
return alert_text[:100]
except Exception as e:
print(f"Error generating AI alert: {e}")
return self._get_default_alert_text(alert_type, severity)
def _get_default_alert_text(self, alert_type, severity):
"""Fallback alert messages"""
default_alerts = {
"EYES_CLOSED": {
"critical": "WAKE UP NOW! Pull over immediately!",
"high": "Eyes closing! Stay alert and pull over soon!",
"medium": "Please keep your eyes open while driving!"
},
"YAWNING": {
"critical": "Excessive yawning detected! Take a break!",
"high": "You seem tired. Consider resting soon.",
"medium": "Frequent yawning noticed. Stay alert!"
},
"HEAD_NOD": {
"critical": "Head nodding detected! Stop driving now!",
"high": "Your head is nodding. Pull over safely!",
"medium": "Head movement detected. Stay focused!"
}
}
alert_key = alert_type[0] if isinstance(alert_type, list) else alert_type
return default_alerts.get(alert_key, {}).get(severity, "Stay alert while driving!")
def create_audio_alert(self, text, sample_rate=22050):
"""Create audio alert (generates beep pattern)"""
try:
duration = 2.0
freq = 800
frames = int(duration * sample_rate)
# Create attention-grabbing beep pattern
t = np.linspace(0, duration, frames)
beep1 = np.sin(2 * np.pi * freq * t) * np.exp(-t * 3)
beep2 = np.sin(2 * np.pi * (freq * 1.5) * t) * np.exp(-t * 3)
# Combine beeps with pause
silence = np.zeros(int(0.1 * sample_rate))
audio = np.concatenate([beep1, silence, beep2, silence, beep1])
# Normalize and convert to int16
audio = (audio * 32767).astype(np.int16)
# Save to temporary file
temp_file = tempfile.NamedTemporaryFile(delete=False, suffix='.wav')
wavfile.write(temp_file.name, sample_rate, audio)
return temp_file.name, text
except Exception as e:
print(f"Error creating audio alert: {e}")
return None, text
class DrowsinessDetectionSystem:
"""Main system coordinator"""
def __init__(self):
self.face_detector = OpenCVFaceDetector()
self.metrics_calculator = MetricsCalculator()
self.drowsiness_analyzer = DrowsinessAnalyzer()
self.alert_manager = AlertManager()
self.visualization_renderer = VisualizationRenderer()
self.logger = StatusLogger()
print("β
Drowsiness Detection System initialized with OpenCV")
def process_frame(self, frame):
"""Process a single frame and return results"""
try:
# Detect face and landmarks
face_rects, landmarks_list = self.face_detector.detect_landmarks(frame)
if not face_rects or not landmarks_list:
self.logger.log("No face detected")
return frame, ["π€ No face detected"], False, {}
# Process first detected face
face_rect = face_rects[0]
landmarks = landmarks_list[0]
# Calculate metrics
ear_left = ear_right = 0.25 # Default values
if 'left_eye_corners' in landmarks:
ear_left = self.metrics_calculator.calculate_ear_from_points(landmarks['left_eye_corners'])
if 'right_eye_corners' in landmarks:
ear_right = self.metrics_calculator.calculate_ear_from_points(landmarks['right_eye_corners'])
ear = (ear_left + ear_right) / 2.0
mar = 0.3 # Default value
if 'mouth_corners' in landmarks:
mar = self.metrics_calculator.calculate_mar_from_points(landmarks['mouth_corners'])
# Head pose estimation
frame_center = (frame.shape[1] // 2, frame.shape[0] // 2)
head_angles = self.metrics_calculator.estimate_head_pose_simple(
landmarks.get('nose_tip'),
landmarks.get('chin'),
frame_center
)
# Analyze drowsiness
indicators = self.drowsiness_analyzer.analyze_drowsiness(ear, mar, head_angles)
severity = self.drowsiness_analyzer.get_severity_level(indicators)
# Check for alerts
should_alert = self.alert_manager.should_trigger_alert(indicators)
# Render visualization
self.visualization_renderer.draw_landmarks_and_contours(frame, landmarks, face_rect)
self.visualization_renderer.draw_metrics_overlay(frame, ear, mar, head_angles[0], indicators)
# Generate status text
status_text = self._generate_status_text(ear, mar, head_angles[0], indicators)
# Log events
if indicators:
self.logger.log(f"Drowsiness detected: {', '.join(indicators)} (Severity: {severity})")
# Prepare metrics
metrics = {
'ear': ear,
'mar': mar,
'head_angle': head_angles[0],
'indicators': indicators,
'severity': severity
}
return frame, status_text, should_alert, metrics
except Exception as e:
error_msg = f"Error processing frame: {str(e)}"
self.logger.log(error_msg)
return frame, [error_msg], False, {}
def _generate_status_text(self, ear, mar, head_angle, indicators):
"""Generate human-readable status text"""
status = []
# EAR status
if ear < self.drowsiness_analyzer.EAR_THRESHOLD:
status.append(f"ποΈ Eyes closing! EAR: {ear:.3f}")
else:
status.append(f"ποΈ Eyes open - EAR: {ear:.3f}")
# MAR status
if mar > self.drowsiness_analyzer.YAWN_THRESHOLD:
status.append(f"π₯± Yawning detected! MAR: {mar:.3f}")
else:
status.append(f"π Normal mouth - MAR: {mar:.3f}")
# Head pose status
if abs(head_angle) > self.drowsiness_analyzer.NOD_THRESHOLD:
status.append(f"π Head nodding! Angle: {head_angle:.1f}Β°")
else:
status.append(f"π Head pose normal - Pitch: {head_angle:.1f}Β°")
# Overall status
if indicators:
status.append(f"β οΈ ALERT: {', '.join(indicators)}")
else:
status.append("β
Driver appears alert")
return status
def get_logs(self):
"""Get recent system logs"""
return "\n".join(self.logger.get_recent_logs()) |