File size: 9,235 Bytes
e65b3b4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
import google.generativeai as genai
import numpy as np
from scipy.io import wavfile
import tempfile
import os

from facial_detection import OpenCVFaceDetector, MetricsCalculator, DrowsinessAnalyzer, AlertManager, VisualizationRenderer, StatusLogger

class AIAlertGenerator:
    """Generate AI-powered voice alerts using Gemini"""
    
    def __init__(self, api_key=None):
        self.model = None
        if api_key:
            try:
                genai.configure(api_key=api_key)
                self.model = genai.GenerativeModel('gemini-1.5-flash')
                print("βœ… Gemini AI initialized for voice alerts")
            except Exception as e:
                print(f"⚠️ Failed to initialize Gemini: {e}")
    
    def generate_alert_text(self, alert_type, severity="medium"):
        """Generate contextual alert text using Gemini"""
        if not self.model:
            return self._get_default_alert_text(alert_type, severity)
        
        try:
            prompts = {
                "EYES_CLOSED": f"Generate a brief, urgent wake-up message (max 12 words) for a drowsy driver whose eyes are closing. Severity: {severity}. Sound caring but firm.",
                "YAWNING": f"Generate a brief, gentle alert (max 10 words) for a driver who is yawning frequently. Severity: {severity}. Sound encouraging.",
                "HEAD_NOD": f"Generate a brief, firm alert (max 10 words) for a driver whose head is nodding. Severity: {severity}. Sound urgent but supportive.",
                "COMBINED": f"Generate a brief, critical alert (max 15 words) for a driver showing multiple drowsiness signs. Severity: {severity}. Sound very urgent but caring."
            }
            
            prompt_key = "COMBINED" if isinstance(alert_type, list) and len(alert_type) > 1 else alert_type[0] if isinstance(alert_type, list) else alert_type
            prompt = prompts.get(prompt_key, prompts["EYES_CLOSED"])
            
            response = self.model.generate_content(prompt)
            alert_text = response.text.strip().replace('"', '').replace("'", "")
            
            return alert_text[:100]
            
        except Exception as e:
            print(f"Error generating AI alert: {e}")
            return self._get_default_alert_text(alert_type, severity)
    
    def _get_default_alert_text(self, alert_type, severity):
        """Fallback alert messages"""
        default_alerts = {
            "EYES_CLOSED": {
                "critical": "WAKE UP NOW! Pull over immediately!",
                "high": "Eyes closing! Stay alert and pull over soon!",
                "medium": "Please keep your eyes open while driving!"
            },
            "YAWNING": {
                "critical": "Excessive yawning detected! Take a break!",
                "high": "You seem tired. Consider resting soon.",
                "medium": "Frequent yawning noticed. Stay alert!"
            },
            "HEAD_NOD": {
                "critical": "Head nodding detected! Stop driving now!",
                "high": "Your head is nodding. Pull over safely!",
                "medium": "Head movement detected. Stay focused!"
            }
        }
        
        alert_key = alert_type[0] if isinstance(alert_type, list) else alert_type
        return default_alerts.get(alert_key, {}).get(severity, "Stay alert while driving!")
    
    def create_audio_alert(self, text, sample_rate=22050):
        """Create audio alert (generates beep pattern)"""
        try:
            duration = 2.0
            freq = 800
            frames = int(duration * sample_rate)
            
            # Create attention-grabbing beep pattern
            t = np.linspace(0, duration, frames)
            beep1 = np.sin(2 * np.pi * freq * t) * np.exp(-t * 3)
            beep2 = np.sin(2 * np.pi * (freq * 1.5) * t) * np.exp(-t * 3)
            
            # Combine beeps with pause
            silence = np.zeros(int(0.1 * sample_rate))
            audio = np.concatenate([beep1, silence, beep2, silence, beep1])
            
            # Normalize and convert to int16
            audio = (audio * 32767).astype(np.int16)
            
            # Save to temporary file
            temp_file = tempfile.NamedTemporaryFile(delete=False, suffix='.wav')
            wavfile.write(temp_file.name, sample_rate, audio)
            
            return temp_file.name, text
            
        except Exception as e:
            print(f"Error creating audio alert: {e}")
            return None, text

class DrowsinessDetectionSystem:
    """Main system coordinator"""
    
    def __init__(self):
        self.face_detector = OpenCVFaceDetector()
        self.metrics_calculator = MetricsCalculator()
        self.drowsiness_analyzer = DrowsinessAnalyzer()
        self.alert_manager = AlertManager()
        self.visualization_renderer = VisualizationRenderer()
        self.logger = StatusLogger()
        
        print("βœ… Drowsiness Detection System initialized with OpenCV")
        
    def process_frame(self, frame):
        """Process a single frame and return results"""
        try:
            # Detect face and landmarks
            face_rects, landmarks_list = self.face_detector.detect_landmarks(frame)
            
            if not face_rects or not landmarks_list:
                self.logger.log("No face detected")
                return frame, ["πŸ‘€ No face detected"], False, {}
            
            # Process first detected face
            face_rect = face_rects[0]
            landmarks = landmarks_list[0]
            
            # Calculate metrics
            ear_left = ear_right = 0.25  # Default values
            
            if 'left_eye_corners' in landmarks:
                ear_left = self.metrics_calculator.calculate_ear_from_points(landmarks['left_eye_corners'])
            if 'right_eye_corners' in landmarks:
                ear_right = self.metrics_calculator.calculate_ear_from_points(landmarks['right_eye_corners'])
            
            ear = (ear_left + ear_right) / 2.0
            
            mar = 0.3  # Default value
            if 'mouth_corners' in landmarks:
                mar = self.metrics_calculator.calculate_mar_from_points(landmarks['mouth_corners'])
            
            # Head pose estimation
            frame_center = (frame.shape[1] // 2, frame.shape[0] // 2)
            head_angles = self.metrics_calculator.estimate_head_pose_simple(
                landmarks.get('nose_tip'), 
                landmarks.get('chin'), 
                frame_center
            )
            
            # Analyze drowsiness
            indicators = self.drowsiness_analyzer.analyze_drowsiness(ear, mar, head_angles)
            severity = self.drowsiness_analyzer.get_severity_level(indicators)
            
            # Check for alerts
            should_alert = self.alert_manager.should_trigger_alert(indicators)
            
            # Render visualization
            self.visualization_renderer.draw_landmarks_and_contours(frame, landmarks, face_rect)
            self.visualization_renderer.draw_metrics_overlay(frame, ear, mar, head_angles[0], indicators)
            
            # Generate status text
            status_text = self._generate_status_text(ear, mar, head_angles[0], indicators)
            
            # Log events
            if indicators:
                self.logger.log(f"Drowsiness detected: {', '.join(indicators)} (Severity: {severity})")
            
            # Prepare metrics
            metrics = {
                'ear': ear,
                'mar': mar,
                'head_angle': head_angles[0],
                'indicators': indicators,
                'severity': severity
            }
            
            return frame, status_text, should_alert, metrics
            
        except Exception as e:
            error_msg = f"Error processing frame: {str(e)}"
            self.logger.log(error_msg)
            return frame, [error_msg], False, {}
    
    def _generate_status_text(self, ear, mar, head_angle, indicators):
        """Generate human-readable status text"""
        status = []
        
        # EAR status
        if ear < self.drowsiness_analyzer.EAR_THRESHOLD:
            status.append(f"πŸ‘οΈ Eyes closing! EAR: {ear:.3f}")
        else:
            status.append(f"πŸ‘οΈ Eyes open - EAR: {ear:.3f}")
        
        # MAR status
        if mar > self.drowsiness_analyzer.YAWN_THRESHOLD:
            status.append(f"πŸ₯± Yawning detected! MAR: {mar:.3f}")
        else:
            status.append(f"πŸ‘„ Normal mouth - MAR: {mar:.3f}")
        
        # Head pose status
        if abs(head_angle) > self.drowsiness_analyzer.NOD_THRESHOLD:
            status.append(f"πŸ“‰ Head nodding! Angle: {head_angle:.1f}Β°")
        else:
            status.append(f"πŸ“ Head pose normal - Pitch: {head_angle:.1f}Β°")
        
        # Overall status
        if indicators:
            status.append(f"⚠️ ALERT: {', '.join(indicators)}")
        else:
            status.append("βœ… Driver appears alert")
        
        return status
    
    def get_logs(self):
        """Get recent system logs"""
        return "\n".join(self.logger.get_recent_logs())