Spaces:
Runtime error
Runtime error
# app_gradio.py | |
import gradio as gr | |
import numpy as np | |
import os | |
import yaml | |
from dotenv import load_dotenv | |
import io | |
from scipy.io.wavfile import read as read_wav | |
# Correctly import from the drive_paddy package structure | |
from src.detection.factory import get_detector | |
from src.alerting.alert_system import get_alerter | |
# --- Load Configuration and Environment Variables --- | |
# This part is the same as our Streamlit app | |
load_dotenv() | |
config_path = 'config.yaml' | |
with open(config_path, 'r') as f: | |
config = yaml.safe_load(f) | |
secrets = { | |
"gemini_api_key": os.getenv("GEMINI_API_KEY"), | |
} | |
# --- Initialize Backend Components --- | |
# We create these once and reuse them. | |
detector = get_detector(config) | |
alerter = get_alerter(config, secrets["gemini_api_key"]) | |
geo_settings = config.get('geometric_settings', {}) | |
drowsiness_levels = geo_settings.get('drowsiness_levels', {}) | |
SLIGHTLY_DROWSY_DEFAULT = drowsiness_levels.get('slightly_drowsy_threshold', 0.3) | |
VERY_DROWSY_DEFAULT = drowsiness_levels.get('very_drowsy_threshold', 0.8) | |
# --- Audio Processing for Gradio --- | |
# Gradio's gr.Audio component needs a specific format: (sample_rate, numpy_array) | |
def process_audio_for_gradio(audio_bytes): | |
"""Converts in-memory audio bytes to a format Gradio can play.""" | |
# gTTS creates MP3, so we read it as such | |
byte_io = io.BytesIO(audio_bytes) | |
# The 'read' function from scipy.io.wavfile expects a WAV file. | |
# We need to first convert the MP3 bytes from gTTS to WAV bytes. | |
# This requires pydub. | |
try: | |
from pydub import AudioSegment | |
audio = AudioSegment.from_mp3(byte_io) | |
wav_byte_io = io.BytesIO() | |
audio.export(wav_byte_io, format="wav") | |
wav_byte_io.seek(0) | |
sample_rate, data = read_wav(wav_byte_io) | |
return (sample_rate, data) | |
except Exception as e: | |
print(f"Could not process audio for Gradio: {e}") | |
return None | |
# --- Main Processing Function for Gradio --- | |
# This function is the core of the app. It takes a webcam frame and returns | |
# updates for all the output components. | |
def process_live_frame(frame): | |
""" | |
Takes a single frame from the Gradio webcam input, processes it, | |
and returns the processed frame, status text, and any audio alerts. | |
""" | |
if frame is None: | |
# Return default values if frame is None | |
blank_image = np.zeros((480, 640, 3), dtype=np.uint8) | |
return blank_image, "Status: Inactive", None | |
# Process the frame using our existing detector | |
processed_frame, indicators, _ = detector.process_frame(frame) | |
drowsiness_level = indicators.get("drowsiness_level", "Awake") | |
lighting = indicators.get("lighting", "Good") | |
score = indicators.get("details", {}).get("Score", 0) | |
# Build the status text | |
# Determine drowsiness level based on the UI slider's value | |
drowsiness_level = "Awake" | |
if score >= VERY_DROWSY_DEFAULT: # Use a fixed upper threshold | |
drowsiness_level = "Very Drowsy" | |
elif score >= sensitivity_threshold: # Use the slider for slight drowsiness | |
drowsiness_level = "Slightly Drowsy" | |
# Build the status text with explicit details | |
status_text = f"Lighting: {lighting}\n" | |
if lighting == "Low": | |
status_text += "Detection paused due to low light." | |
else: | |
status_text += f"Status: {drowsiness_level}\nScore: {score:.2f} (Threshold: {sensitivity_threshold:.2f})" | |
# Explicitly show what is being detected | |
if score > 0: | |
if indicators.get('eye_closure'): status_text += "\n- Eyes Closed Detected" | |
if indicators.get('yawning'): status_text += "\n- Yawn Detected" | |
if indicators.get('head_nod'): status_text += "\n- Head Nod Detected" | |
if indicators.get('looking_away'): status_text += "\n- Looking Away Detected" | |
# Handle alerts | |
audio_output = None | |
if drowsiness_level != "Awake": | |
audio_data = alerter.trigger_alert(level=drowsiness_level) | |
if audio_data: | |
audio_output = process_audio_for_gradio(audio_data) | |
else: | |
alerter.reset_alert() | |
# Return all the values needed to update the UI | |
return processed_frame, status_text, audio_output | |
# --- UI Definition for the Live Detection Page --- | |
def create_live_detection_page(): | |
"""Builds the Gradio UI components for the live detection tab.""" | |
with gr.Blocks(theme=gr.themes.Default(primary_hue="blue", secondary_hue="blue")) as live_detection_page: | |
gr.Markdown("A live test using Gradio's webcam component.") | |
with gr.Row(): | |
with gr.Column(): | |
webcam_input = gr.Image(sources=["webcam"], streaming=True, label="Live Camera Feed") | |
with gr.Column(): | |
processed_output = gr.Image(label="Processed Feed") | |
status_output = gr.Textbox(label="Live Status", lines=3, interactive=False) | |
# Audio player is now visible for debugging and user feedback. | |
audio_alert_output = gr.Audio(autoplay=True, visible=True, label="Alert Sound") | |
# --- Added Sensitivity Slider --- | |
sensitivity_slider = gr.Slider( | |
minimum=0.1, | |
maximum=1.0, | |
value=SLIGHTLY_DROWSY_DEFAULT, | |
step=0.05, | |
label="Alert Sensitivity Threshold", | |
info="Lower value = more sensitive to drowsiness signs." | |
) | |
# Link the inputs (webcam and slider) to the processing function and its outputs | |
webcam_input.stream( | |
fn=process_live_frame, | |
inputs=[webcam_input, sensitivity_slider], | |
outputs=[processed_output, status_output, audio_alert_output], | |
every=0.1 | |
) | |
return live_detection_page | |
# --- UI Definition for the Home Page --- | |
def create_home_page(): | |
"""Builds the Gradio UI components for the home/welcome tab.""" | |
with gr.Blocks(theme=gr.themes.Default(primary_hue="blue", secondary_hue="blue")) as home_page: | |
gr.Markdown( | |
""" | |
<div align="center"> | |
<img src="https://em-content.zobj.net/source/samsung/380/automobile_1f697.png" alt="Car Emoji" width="100"/> | |
<h1>Welcome to Drive Paddy!</h1> | |
<p><strong>Your Drowsiness Detection Assistant</strong></p> | |
</div> | |
--- | |
### How It Works | |
This application uses your webcam to monitor for signs of drowsiness in real-time. Navigate to the **Live Detection** tab to begin. | |
- **Multi-Signal Analysis**: Detects eye closure, yawning, and head position. | |
- **AI-Powered Alerts**: Uses Gemini to generate dynamic audio warnings. | |
- **Live Feedback**: Provides instant visual feedback on the video stream and status panel. | |
""" | |
) | |
return home_page | |
# --- Combine Pages into a Tabbed Interface --- | |
app = gr.TabbedInterface( | |
[create_home_page(), create_live_detection_page()], | |
["Home", "Live Detection"] | |
) | |
# --- Launch the App --- | |
app.launch(debug=True) | |