driver-paddy / app.py
Testys's picture
Update app.py
e8a0692 verified
raw
history blame
7.07 kB
# app_gradio.py
import gradio as gr
import numpy as np
import os
import yaml
from dotenv import load_dotenv
import io
from scipy.io.wavfile import read as read_wav
# Correctly import from the drive_paddy package structure
from src.detection.factory import get_detector
from src.alerting.alert_system import get_alerter
# --- Load Configuration and Environment Variables ---
# This part is the same as our Streamlit app
load_dotenv()
config_path = 'config.yaml'
with open(config_path, 'r') as f:
config = yaml.safe_load(f)
secrets = {
"gemini_api_key": os.getenv("GEMINI_API_KEY"),
}
# --- Initialize Backend Components ---
# We create these once and reuse them.
detector = get_detector(config)
alerter = get_alerter(config, secrets["gemini_api_key"])
geo_settings = config.get('geometric_settings', {})
drowsiness_levels = geo_settings.get('drowsiness_levels', {})
SLIGHTLY_DROWSY_DEFAULT = drowsiness_levels.get('slightly_drowsy_threshold', 0.3)
VERY_DROWSY_DEFAULT = drowsiness_levels.get('very_drowsy_threshold', 0.8)
# --- Audio Processing for Gradio ---
# Gradio's gr.Audio component needs a specific format: (sample_rate, numpy_array)
def process_audio_for_gradio(audio_bytes):
"""Converts in-memory audio bytes to a format Gradio can play."""
# gTTS creates MP3, so we read it as such
byte_io = io.BytesIO(audio_bytes)
# The 'read' function from scipy.io.wavfile expects a WAV file.
# We need to first convert the MP3 bytes from gTTS to WAV bytes.
# This requires pydub.
try:
from pydub import AudioSegment
audio = AudioSegment.from_mp3(byte_io)
wav_byte_io = io.BytesIO()
audio.export(wav_byte_io, format="wav")
wav_byte_io.seek(0)
sample_rate, data = read_wav(wav_byte_io)
return (sample_rate, data)
except Exception as e:
print(f"Could not process audio for Gradio: {e}")
return None
# --- Main Processing Function for Gradio ---
# This function is the core of the app. It takes a webcam frame and returns
# updates for all the output components.
def process_live_frame(frame):
"""
Takes a single frame from the Gradio webcam input, processes it,
and returns the processed frame, status text, and any audio alerts.
"""
if frame is None:
# Return default values if frame is None
blank_image = np.zeros((480, 640, 3), dtype=np.uint8)
return blank_image, "Status: Inactive", None
# Process the frame using our existing detector
processed_frame, indicators, _ = detector.process_frame(frame)
drowsiness_level = indicators.get("drowsiness_level", "Awake")
lighting = indicators.get("lighting", "Good")
score = indicators.get("details", {}).get("Score", 0)
# Build the status text
# Determine drowsiness level based on the UI slider's value
drowsiness_level = "Awake"
if score >= VERY_DROWSY_DEFAULT: # Use a fixed upper threshold
drowsiness_level = "Very Drowsy"
elif score >= sensitivity_threshold: # Use the slider for slight drowsiness
drowsiness_level = "Slightly Drowsy"
# Build the status text with explicit details
status_text = f"Lighting: {lighting}\n"
if lighting == "Low":
status_text += "Detection paused due to low light."
else:
status_text += f"Status: {drowsiness_level}\nScore: {score:.2f} (Threshold: {sensitivity_threshold:.2f})"
# Explicitly show what is being detected
if score > 0:
if indicators.get('eye_closure'): status_text += "\n- Eyes Closed Detected"
if indicators.get('yawning'): status_text += "\n- Yawn Detected"
if indicators.get('head_nod'): status_text += "\n- Head Nod Detected"
if indicators.get('looking_away'): status_text += "\n- Looking Away Detected"
# Handle alerts
audio_output = None
if drowsiness_level != "Awake":
audio_data = alerter.trigger_alert(level=drowsiness_level)
if audio_data:
audio_output = process_audio_for_gradio(audio_data)
else:
alerter.reset_alert()
# Return all the values needed to update the UI
return processed_frame, status_text, audio_output
# --- UI Definition for the Live Detection Page ---
def create_live_detection_page():
"""Builds the Gradio UI components for the live detection tab."""
with gr.Blocks(theme=gr.themes.Default(primary_hue="blue", secondary_hue="blue")) as live_detection_page:
gr.Markdown("A live test using Gradio's webcam component.")
with gr.Row():
with gr.Column():
webcam_input = gr.Image(sources=["webcam"], streaming=True, label="Live Camera Feed")
with gr.Column():
processed_output = gr.Image(label="Processed Feed")
status_output = gr.Textbox(label="Live Status", lines=3, interactive=False)
# Audio player is now visible for debugging and user feedback.
audio_alert_output = gr.Audio(autoplay=True, visible=True, label="Alert Sound")
# --- Added Sensitivity Slider ---
sensitivity_slider = gr.Slider(
minimum=0.1,
maximum=1.0,
value=SLIGHTLY_DROWSY_DEFAULT,
step=0.05,
label="Alert Sensitivity Threshold",
info="Lower value = more sensitive to drowsiness signs."
)
# Link the inputs (webcam and slider) to the processing function and its outputs
webcam_input.stream(
fn=process_live_frame,
inputs=[webcam_input, sensitivity_slider],
outputs=[processed_output, status_output, audio_alert_output],
every=0.1
)
return live_detection_page
# --- UI Definition for the Home Page ---
def create_home_page():
"""Builds the Gradio UI components for the home/welcome tab."""
with gr.Blocks(theme=gr.themes.Default(primary_hue="blue", secondary_hue="blue")) as home_page:
gr.Markdown(
"""
<div align="center">
<img src="https://em-content.zobj.net/source/samsung/380/automobile_1f697.png" alt="Car Emoji" width="100"/>
<h1>Welcome to Drive Paddy!</h1>
<p><strong>Your Drowsiness Detection Assistant</strong></p>
</div>
---
### How It Works
This application uses your webcam to monitor for signs of drowsiness in real-time. Navigate to the **Live Detection** tab to begin.
- **Multi-Signal Analysis**: Detects eye closure, yawning, and head position.
- **AI-Powered Alerts**: Uses Gemini to generate dynamic audio warnings.
- **Live Feedback**: Provides instant visual feedback on the video stream and status panel.
"""
)
return home_page
# --- Combine Pages into a Tabbed Interface ---
app = gr.TabbedInterface(
[create_home_page(), create_live_detection_page()],
["Home", "Live Detection"]
)
# --- Launch the App ---
app.launch(debug=True)