Spaces:
Runtime error
Runtime error
# drive_paddy/detection/strategies/cnn_model.py | |
from src.detection.base_processor import BaseProcessor | |
import numpy as np | |
import torch | |
import torchvision.transforms as transforms | |
from torchvision.models import efficientnet_b7 | |
import cv2 | |
import dlib | |
from PIL import Image | |
import os | |
class CnnProcessor(BaseProcessor): | |
""" | |
Drowsiness detection using a pre-trained EfficientNet-B7 model. | |
""" | |
def __init__(self, config): | |
self.settings = config['cnn_model_settings'] | |
self.model_path = self.settings['model_path'] | |
self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu") | |
# Initialize dlib for face detection | |
self.face_detector = dlib.get_frontal_face_detector() | |
# Load the model | |
self.model = self._load_model() | |
# Define image transformations | |
self.transform = transforms.Compose([ | |
transforms.Resize((224, 224)), | |
transforms.ToTensor(), | |
transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]), | |
]) | |
def _load_model(self): | |
"""Loads the EfficientNet-B7 model and custom weights.""" | |
if not os.path.exists(self.model_path): | |
print(f"Error: Model file not found at {self.model_path}") | |
print("Please run 'python download_model.py' first.") | |
return None | |
try: | |
# Initialize the model structure | |
model = efficientnet_b7() | |
# Modify the final classifier layer to match the number of output classes (e.g., 2: drowsy, not_drowsy) | |
num_ftrs = model.classifier[1].in_features | |
model.classifier[1] = torch.nn.Linear(num_ftrs, 2) # Assuming 2 output classes | |
# Load the saved weights | |
model.load_state_dict(torch.load(self.model_path, map_location=self.device)) | |
model.to(self.device) | |
model.eval() # Set the model to evaluation mode | |
print(f"CNN Model '{self.model_path}' loaded successfully on {self.device}.") | |
return model | |
except Exception as e: | |
print(f"Error loading CNN model: {e}") | |
return None | |
def process_frame(self, frame): | |
""" | |
Processes a frame to detect drowsiness using the CNN model. | |
""" | |
if self.model is None: | |
return frame, {"cnn_prediction": False} | |
gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY) | |
faces = self.face_detector(gray) | |
is_drowsy_prediction = False | |
for face in faces: | |
x1, y1, x2, y2 = face.left(), face.top(), face.right(), face.bottom() | |
# Crop the face from the frame | |
face_crop = frame[y1:y2, x1:x2] | |
# Ensure the crop is valid before processing | |
if face_crop.size == 0: | |
continue | |
# Convert to PIL Image and apply transformations | |
pil_image = Image.fromarray(cv2.cvtColor(face_crop, cv2.COLOR_BGR2RGB)) | |
image_tensor = self.transform(pil_image).unsqueeze(0).to(self.device) | |
# Perform inference | |
with torch.no_grad(): | |
outputs = self.model(image_tensor) | |
_, preds = torch.max(outputs, 1) | |
# Assuming class 1 is 'drowsy' and class 0 is 'not_drowsy' | |
print(preds) | |
if preds.item() == 1: | |
is_drowsy_prediction = True | |
# Draw bounding box for visualization | |
cv2.rectangle(frame, (x1, y1), (x2, y2), (255, 255, 0), 2) | |
label = "Drowsy" if is_drowsy_prediction else "Awake" | |
cv2.putText(frame, f"CNN: {label}", (x1, y1 - 10), cv2.FONT_HERSHEY_SIMPLEX, 0.7, (255, 255, 0), 2) | |
# Process only the first detected face | |
break | |
return frame, {"cnn_prediction": is_drowsy_prediction} | |