Testys commited on
Commit
a4af8e6
Β·
verified Β·
1 Parent(s): 6b4c734

Create app.py

Browse files
Files changed (1) hide show
  1. app.py +115 -0
app.py ADDED
@@ -0,0 +1,115 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # app_gradio.py
2
+ import gradio as gr
3
+ import numpy as np
4
+ import os
5
+ import yaml
6
+ from dotenv import load_dotenv
7
+ import io
8
+ from scipy.io.wavfile import read as read_wav
9
+
10
+ # Correctly import from the drive_paddy package structure
11
+ from src.detection.factory import get_detector
12
+ from src.alerting.alert_system import get_alerter
13
+
14
+ # --- Load Configuration and Environment Variables ---
15
+ # This part is the same as our Streamlit app
16
+ load_dotenv()
17
+ config_path = 'config.yaml'
18
+ with open(config_path, 'r') as f:
19
+ config = yaml.safe_load(f)
20
+ secrets = {
21
+ "gemini_api_key": os.getenv("GEMINI_API_KEY"),
22
+ }
23
+
24
+ # --- Initialize Backend Components ---
25
+ # We create these once and reuse them.
26
+ detector = get_detector(config)
27
+ alerter = get_alerter(config, secrets["gemini_api_key"])
28
+
29
+ # --- Audio Processing for Gradio ---
30
+ # Gradio's gr.Audio component needs a specific format: (sample_rate, numpy_array)
31
+ def process_audio_for_gradio(audio_bytes):
32
+ """Converts in-memory audio bytes to a format Gradio can play."""
33
+ # gTTS creates MP3, so we read it as such
34
+ byte_io = io.BytesIO(audio_bytes)
35
+ # The 'read' function from scipy.io.wavfile expects a WAV file.
36
+ # We need to first convert the MP3 bytes from gTTS to WAV bytes.
37
+ # This requires pydub.
38
+ try:
39
+ from pydub import AudioSegment
40
+ audio = AudioSegment.from_mp3(byte_io)
41
+ wav_byte_io = io.BytesIO()
42
+ audio.export(wav_byte_io, format="wav")
43
+ wav_byte_io.seek(0)
44
+
45
+ sample_rate, data = read_wav(wav_byte_io)
46
+ return (sample_rate, data)
47
+ except Exception as e:
48
+ print(f"Could not process audio for Gradio: {e}")
49
+ return None
50
+
51
+ # --- Main Processing Function for Gradio ---
52
+ # This function is the core of the app. It takes a webcam frame and returns
53
+ # updates for all the output components.
54
+ def process_live_frame(frame):
55
+ """
56
+ Takes a single frame from the Gradio webcam input, processes it,
57
+ and returns the processed frame, status text, and any audio alerts.
58
+ """
59
+ if frame is None:
60
+ # Return default values if frame is None
61
+ blank_image = np.zeros((480, 640, 3), dtype=np.uint8)
62
+ return blank_image, "Status: Inactive", None
63
+
64
+ # Process the frame using our existing detector
65
+ processed_frame, indicators, _ = detector.process_frame(frame)
66
+ drowsiness_level = indicators.get("drowsiness_level", "Awake")
67
+ lighting = indicators.get("lighting", "Good")
68
+ score = indicators.get("details", {}).get("Score", 0)
69
+
70
+ # Build the status text
71
+ status_text = f"Lighting: {lighting}\n"
72
+ if lighting == "Low":
73
+ status_text += "Detection paused due to low light."
74
+ else:
75
+ status_text += f"Status: {drowsiness_level}\nScore: {score:.2f}"
76
+
77
+ # Handle alerts
78
+ audio_output = None
79
+ if drowsiness_level != "Awake":
80
+ audio_data = alerter.trigger_alert(level=drowsiness_level)
81
+ if audio_data:
82
+ audio_output = process_audio_for_gradio(audio_data)
83
+ else:
84
+ alerter.reset_alert()
85
+
86
+ # Return all the values needed to update the UI
87
+ return processed_frame, status_text, audio_output
88
+
89
+ # --- Gradio UI Definition ---
90
+ with gr.Blocks(theme=gr.themes.Default(primary_hue="blue", secondary_hue="blue")) as app:
91
+ gr.Markdown("# πŸš— Drive Paddy - Drowsiness Detection (Gradio)")
92
+ gr.Markdown("A live test using Gradio's webcam component. This can be more stable than WebRTC in some environments.")
93
+
94
+ with gr.Row():
95
+ with gr.Column():
96
+ # Input: Live webcam feed
97
+ webcam_input = gr.Image(sources=["webcam"], streaming=True, label="Live Camera Feed")
98
+ with gr.Column():
99
+ # Output 1: Processed video feed
100
+ processed_output = gr.Image(label="Processed Feed")
101
+ # Output 2: Live status text
102
+ status_output = gr.Textbox(label="Live Status", lines=3, interactive=False)
103
+ # Output 3: Hidden audio player for alerts
104
+ audio_alert_output = gr.Audio(autoplay=True, visible=False)
105
+
106
+ # Link the input to the processing function and the function to the outputs
107
+ webcam_input.stream(
108
+ fn=process_live_frame,
109
+ inputs=[webcam_input],
110
+ outputs=[processed_output, status_output, audio_alert_output]
111
+ )
112
+
113
+ # --- Launch the App ---
114
+ if __name__ == "__main__":
115
+ app.launch(debug=True)