Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -1,4 +1,4 @@
|
|
1 |
-
#
|
2 |
import gradio as gr
|
3 |
import numpy as np
|
4 |
import os
|
@@ -6,13 +6,16 @@ import yaml
|
|
6 |
from dotenv import load_dotenv
|
7 |
import io
|
8 |
from scipy.io.wavfile import read as read_wav
|
|
|
|
|
|
|
|
|
9 |
|
10 |
# Correctly import from the drive_paddy package structure
|
11 |
-
from
|
12 |
-
from
|
13 |
|
14 |
# --- Load Configuration and Environment Variables ---
|
15 |
-
# This part is the same as our Streamlit app
|
16 |
load_dotenv()
|
17 |
config_path = 'config.yaml'
|
18 |
with open(config_path, 'r') as f:
|
@@ -22,151 +25,116 @@ secrets = {
|
|
22 |
}
|
23 |
|
24 |
# --- Initialize Backend Components ---
|
25 |
-
# We create these once and reuse them.
|
26 |
detector = get_detector(config)
|
27 |
alerter = get_alerter(config, secrets["gemini_api_key"])
|
28 |
-
|
29 |
geo_settings = config.get('geometric_settings', {})
|
30 |
drowsiness_levels = geo_settings.get('drowsiness_levels', {})
|
31 |
SLIGHTLY_DROWSY_DEFAULT = drowsiness_levels.get('slightly_drowsy_threshold', 0.3)
|
32 |
VERY_DROWSY_DEFAULT = drowsiness_levels.get('very_drowsy_threshold', 0.8)
|
33 |
|
|
|
|
|
|
|
|
|
34 |
|
35 |
-
# ---
|
36 |
-
|
37 |
-
def process_audio_for_gradio(audio_bytes):
|
38 |
-
"""Converts in-memory audio bytes to a format Gradio can play."""
|
39 |
-
# gTTS creates MP3, so we read it as such
|
40 |
-
byte_io = io.BytesIO(audio_bytes)
|
41 |
-
# The 'read' function from scipy.io.wavfile expects a WAV file.
|
42 |
-
# We need to first convert the MP3 bytes from gTTS to WAV bytes.
|
43 |
-
# This requires pydub.
|
44 |
-
try:
|
45 |
-
from pydub import AudioSegment
|
46 |
-
audio = AudioSegment.from_mp3(byte_io)
|
47 |
-
wav_byte_io = io.BytesIO()
|
48 |
-
audio.export(wav_byte_io, format="wav")
|
49 |
-
wav_byte_io.seek(0)
|
50 |
-
|
51 |
-
sample_rate, data = read_wav(wav_byte_io)
|
52 |
-
return (sample_rate, data)
|
53 |
-
except Exception as e:
|
54 |
-
print(f"Could not process audio for Gradio: {e}")
|
55 |
-
return None
|
56 |
-
|
57 |
-
# --- Main Processing Function for Gradio ---
|
58 |
-
# This function is the core of the app. It takes a webcam frame and returns
|
59 |
-
# updates for all the output components.
|
60 |
-
def process_live_frame(frame):
|
61 |
"""
|
62 |
-
|
63 |
-
|
64 |
"""
|
|
|
|
|
65 |
if frame is None:
|
66 |
-
|
67 |
-
blank_image = np.zeros((480, 640, 3), dtype=np.uint8)
|
68 |
-
return blank_image, "Status: Inactive", None
|
69 |
|
70 |
-
# Process the frame using our existing detector
|
|
|
71 |
processed_frame, indicators, _ = detector.process_frame(frame)
|
72 |
drowsiness_level = indicators.get("drowsiness_level", "Awake")
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
# Build the status text
|
77 |
-
# Determine drowsiness level based on the UI slider's value
|
78 |
-
drowsiness_level = "Awake"
|
79 |
-
if score >= VERY_DROWSY_DEFAULT: # Use a fixed upper threshold
|
80 |
-
drowsiness_level = "Very Drowsy"
|
81 |
-
elif score >= sensitivity_threshold: # Use the slider for slight drowsiness
|
82 |
-
drowsiness_level = "Slightly Drowsy"
|
83 |
-
|
84 |
-
# Build the status text with explicit details
|
85 |
-
status_text = f"Lighting: {lighting}\n"
|
86 |
-
if lighting == "Low":
|
87 |
-
status_text += "Detection paused due to low light."
|
88 |
-
else:
|
89 |
-
status_text += f"Status: {drowsiness_level}\nScore: {score:.2f} (Threshold: {sensitivity_threshold:.2f})"
|
90 |
-
# Explicitly show what is being detected
|
91 |
-
if score > 0:
|
92 |
-
if indicators.get('eye_closure'): status_text += "\n- Eyes Closed Detected"
|
93 |
-
if indicators.get('yawning'): status_text += "\n- Yawn Detected"
|
94 |
-
if indicators.get('head_nod'): status_text += "\n- Head Nod Detected"
|
95 |
-
if indicators.get('looking_away'): status_text += "\n- Looking Away Detected"
|
96 |
-
|
97 |
-
# Handle alerts
|
98 |
-
audio_output = None
|
99 |
if drowsiness_level != "Awake":
|
100 |
audio_data = alerter.trigger_alert(level=drowsiness_level)
|
101 |
if audio_data:
|
102 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
103 |
else:
|
104 |
alerter.reset_alert()
|
105 |
|
106 |
-
|
107 |
-
return processed_frame, status_text, audio_output
|
108 |
-
|
109 |
-
# --- UI Definition for the Live Detection Page ---
|
110 |
-
def create_live_detection_page():
|
111 |
-
"""Builds the Gradio UI components for the live detection tab."""
|
112 |
-
with gr.Blocks(theme=gr.themes.Default(primary_hue="blue", secondary_hue="blue")) as live_detection_page:
|
113 |
-
gr.Markdown("A live test using Gradio's webcam component.")
|
114 |
-
with gr.Row():
|
115 |
-
with gr.Column():
|
116 |
-
webcam_input = gr.Image(sources=["webcam"], streaming=True, label="Live Camera Feed")
|
117 |
-
with gr.Column():
|
118 |
-
processed_output = gr.Image(label="Processed Feed")
|
119 |
-
status_output = gr.Textbox(label="Live Status", lines=3, interactive=False)
|
120 |
-
# Audio player is now visible for debugging and user feedback.
|
121 |
-
audio_alert_output = gr.Audio(autoplay=True, visible=True, label="Alert Sound")
|
122 |
-
# --- Added Sensitivity Slider ---
|
123 |
-
sensitivity_slider = gr.Slider(
|
124 |
-
minimum=0.1,
|
125 |
-
maximum=1.0,
|
126 |
-
value=SLIGHTLY_DROWSY_DEFAULT,
|
127 |
-
step=0.05,
|
128 |
-
label="Alert Sensitivity Threshold",
|
129 |
-
info="Lower value = more sensitive to drowsiness signs."
|
130 |
-
)
|
131 |
-
|
132 |
-
# Link the inputs (webcam and slider) to the processing function and its outputs
|
133 |
-
webcam_input.stream(
|
134 |
-
fn=process_live_frame,
|
135 |
-
inputs=[webcam_input, sensitivity_slider],
|
136 |
-
outputs=[processed_output, status_output, audio_alert_output],
|
137 |
-
every=0.1
|
138 |
-
)
|
139 |
-
return live_detection_page
|
140 |
|
141 |
-
# ---
|
142 |
-
def
|
143 |
-
"""
|
144 |
-
|
145 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
146 |
"""
|
147 |
<div align="center">
|
148 |
-
|
149 |
-
|
150 |
-
<p><strong>Your Drowsiness Detection Assistant</strong></p>
|
151 |
</div>
|
152 |
-
|
153 |
-
---
|
154 |
-
|
155 |
-
### How It Works
|
156 |
-
This application uses your webcam to monitor for signs of drowsiness in real-time. Navigate to the **Live Detection** tab to begin.
|
157 |
-
|
158 |
-
- **Multi-Signal Analysis**: Detects eye closure, yawning, and head position.
|
159 |
-
- **AI-Powered Alerts**: Uses Gemini to generate dynamic audio warnings.
|
160 |
-
- **Live Feedback**: Provides instant visual feedback on the video stream and status panel.
|
161 |
"""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
162 |
)
|
163 |
-
return home_page
|
164 |
|
165 |
-
#
|
166 |
-
|
167 |
-
|
168 |
-
|
169 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
170 |
|
171 |
# --- Launch the App ---
|
172 |
-
|
|
|
|
1 |
+
# app_webrtc.py
|
2 |
import gradio as gr
|
3 |
import numpy as np
|
4 |
import os
|
|
|
6 |
from dotenv import load_dotenv
|
7 |
import io
|
8 |
from scipy.io.wavfile import read as read_wav
|
9 |
+
from pydub import AudioSegment
|
10 |
+
import cv2
|
11 |
+
import time
|
12 |
+
from gradio_webrtc import WebRTC
|
13 |
|
14 |
# Correctly import from the drive_paddy package structure
|
15 |
+
from drive_paddy.detection.factory import get_detector
|
16 |
+
from drive_paddy.alerting.alert_system import get_alerter
|
17 |
|
18 |
# --- Load Configuration and Environment Variables ---
|
|
|
19 |
load_dotenv()
|
20 |
config_path = 'config.yaml'
|
21 |
with open(config_path, 'r') as f:
|
|
|
25 |
}
|
26 |
|
27 |
# --- Initialize Backend Components ---
|
|
|
28 |
detector = get_detector(config)
|
29 |
alerter = get_alerter(config, secrets["gemini_api_key"])
|
|
|
30 |
geo_settings = config.get('geometric_settings', {})
|
31 |
drowsiness_levels = geo_settings.get('drowsiness_levels', {})
|
32 |
SLIGHTLY_DROWSY_DEFAULT = drowsiness_levels.get('slightly_drowsy_threshold', 0.3)
|
33 |
VERY_DROWSY_DEFAULT = drowsiness_levels.get('very_drowsy_threshold', 0.8)
|
34 |
|
35 |
+
# --- Global state for audio (simpler than queues for this component) ---
|
36 |
+
# We use a global variable to hold the audio data, which the UI will poll.
|
37 |
+
# This is a common pattern in simple Gradio streaming apps.
|
38 |
+
latest_audio_alert = None
|
39 |
|
40 |
+
# --- Main Processing Function ---
|
41 |
+
def process_stream(frame: np.ndarray, sensitivity_threshold: float) -> np.ndarray:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
42 |
"""
|
43 |
+
This is the core function. It takes a frame and returns the processed frame.
|
44 |
+
All logic, including status drawing and alert triggering, happens here.
|
45 |
"""
|
46 |
+
global latest_audio_alert
|
47 |
+
|
48 |
if frame is None:
|
49 |
+
return np.zeros((480, 640, 3), dtype=np.uint8)
|
|
|
|
|
50 |
|
51 |
+
# Process the frame using our existing detector.
|
52 |
+
# The detector already draws landmarks and status overlays.
|
53 |
processed_frame, indicators, _ = detector.process_frame(frame)
|
54 |
drowsiness_level = indicators.get("drowsiness_level", "Awake")
|
55 |
+
|
56 |
+
# Handle audio alerts
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
57 |
if drowsiness_level != "Awake":
|
58 |
audio_data = alerter.trigger_alert(level=drowsiness_level)
|
59 |
if audio_data:
|
60 |
+
# Convert audio for Gradio and store it in the global variable
|
61 |
+
try:
|
62 |
+
byte_io = io.BytesIO(audio_data)
|
63 |
+
audio = AudioSegment.from_mp3(byte_io)
|
64 |
+
wav_byte_io = io.BytesIO()
|
65 |
+
audio.export(wav_byte_io, format="wav")
|
66 |
+
wav_byte_io.seek(0)
|
67 |
+
sample_rate, data = read_wav(wav_byte_io)
|
68 |
+
latest_audio_alert = (sample_rate, data)
|
69 |
+
except Exception as e:
|
70 |
+
print(f"Audio processing error: {e}")
|
71 |
+
latest_audio_alert = None
|
72 |
else:
|
73 |
alerter.reset_alert()
|
74 |
|
75 |
+
return processed_frame
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
76 |
|
77 |
+
# --- Function to check for and return audio alerts ---
|
78 |
+
def get_audio_update():
|
79 |
+
"""
|
80 |
+
This function is polled by the UI to check for new audio alerts.
|
81 |
+
"""
|
82 |
+
global latest_audio_alert
|
83 |
+
if latest_audio_alert:
|
84 |
+
audio_to_play = latest_audio_alert
|
85 |
+
latest_audio_alert = None # Clear the alert after sending it
|
86 |
+
return audio_to_play
|
87 |
+
return None
|
88 |
+
|
89 |
+
# --- Gradio UI Definition ---
|
90 |
+
with gr.Blocks(theme=gr.themes.Default(primary_hue="blue", secondary_hue="blue")) as app:
|
91 |
+
gr.HTML(
|
92 |
"""
|
93 |
<div align="center">
|
94 |
+
<img src="https://em-content.zobj.net/source/samsung/380/automobile_1f697.png" alt="Car Emoji" width="100"/>
|
95 |
+
<h1>Drive Paddyn</h1>
|
|
|
96 |
</div>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
97 |
"""
|
98 |
+
)
|
99 |
+
|
100 |
+
with gr.Row():
|
101 |
+
# The WebRTC component now directly shows the processed output
|
102 |
+
webrtc_output = WebRTC(
|
103 |
+
label="Live Detection Feed",
|
104 |
+
video_source="webcam",
|
105 |
+
)
|
106 |
+
|
107 |
+
with gr.Row():
|
108 |
+
sensitivity_slider = gr.Slider(
|
109 |
+
minimum=0.1,
|
110 |
+
maximum=1.0,
|
111 |
+
value=SLIGHTLY_DROWSY_DEFAULT,
|
112 |
+
step=0.05,
|
113 |
+
label="Alert Sensitivity Threshold",
|
114 |
+
info="Lower value = more sensitive to drowsiness signs."
|
115 |
)
|
|
|
116 |
|
117 |
+
# Hidden audio component for playing alerts
|
118 |
+
audio_player = gr.Audio(autoplay=True, visible=False)
|
119 |
+
|
120 |
+
# Connect the WebRTC stream to the processing function
|
121 |
+
webrtc_output.stream(
|
122 |
+
fn=process_stream,
|
123 |
+
inputs=[webrtc_output, sensitivity_slider],
|
124 |
+
outputs=[webrtc_output],
|
125 |
+
# The 'every' parameter is not needed for this component; it streams as fast as possible.
|
126 |
+
)
|
127 |
+
|
128 |
+
# Use a separate loop to poll for audio updates.
|
129 |
+
# This is more stable than returning multiple values in a high-frequency stream.
|
130 |
+
app.load(
|
131 |
+
fn=get_audio_update,
|
132 |
+
inputs=None,
|
133 |
+
outputs=[audio_player],
|
134 |
+
every=1 # Check for a new audio alert every 1 second
|
135 |
+
)
|
136 |
+
|
137 |
|
138 |
# --- Launch the App ---
|
139 |
+
if __name__ == "__main__":
|
140 |
+
app.launch(debug=True)
|