Spaces:
Sleeping
Sleeping
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,130 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
import joblib
|
3 |
+
import numpy as np
|
4 |
+
import pandas as pd
|
5 |
+
|
6 |
+
# --- 1. Load Model and Dataset for Feature Information ---
|
7 |
+
|
8 |
+
@st.cache_data
|
9 |
+
def load_data_and_model():
|
10 |
+
"""
|
11 |
+
Loads the saved model and the dataset from the Excel file.
|
12 |
+
Using st.cache_data to avoid reloading on every interaction.
|
13 |
+
"""
|
14 |
+
try:
|
15 |
+
# Load the pre-trained Voting Classifier model
|
16 |
+
model = joblib.load('voting_classifier_model.joblib')
|
17 |
+
except FileNotFoundError:
|
18 |
+
st.error("The model file 'voting_classifier_model.joblib' was not found.")
|
19 |
+
st.info("Please ensure the model file is in the same directory as this script.")
|
20 |
+
st.stop()
|
21 |
+
|
22 |
+
try:
|
23 |
+
# Load your specific dataset to get feature names and default values
|
24 |
+
df = pd.read_excel('breast-cancer.xls')
|
25 |
+
# Assuming the first column is 'id' and the second is 'diagnosis' (the target)
|
26 |
+
# The rest are the features.
|
27 |
+
feature_names = df.columns[2:].tolist()
|
28 |
+
|
29 |
+
# Store the dataframe for calculating min/max/mean values for sliders
|
30 |
+
feature_data = df[feature_names]
|
31 |
+
|
32 |
+
except FileNotFoundError:
|
33 |
+
st.error("The dataset file 'breast-cancer.xls' was not found.")
|
34 |
+
st.info("Please ensure your Excel file is in the same directory as this script.")
|
35 |
+
st.stop()
|
36 |
+
except Exception as e:
|
37 |
+
st.error(f"Could not load or process the dataset file. Error: {e}")
|
38 |
+
st.stop()
|
39 |
+
|
40 |
+
return model, feature_names, feature_data
|
41 |
+
|
42 |
+
model, feature_names, feature_data = load_data_and_model()
|
43 |
+
|
44 |
+
|
45 |
+
# --- 2. Streamlit App Interface ---
|
46 |
+
|
47 |
+
st.set_page_config(page_title="Breast Cancer Predictor", layout="wide")
|
48 |
+
|
49 |
+
# Main Title
|
50 |
+
st.title("🔬 Breast Cancer Prediction Interface")
|
51 |
+
st.markdown("""
|
52 |
+
This application uses your pre-trained model to predict whether a breast tumor is **Malignant** or **Benign**.
|
53 |
+
The input fields below are based on the columns from your `breast-cancer.xls` file.
|
54 |
+
""")
|
55 |
+
|
56 |
+
st.write("---")
|
57 |
+
|
58 |
+
|
59 |
+
# --- 3. User Input via Sliders ---
|
60 |
+
|
61 |
+
st.sidebar.header("Input Tumor Features")
|
62 |
+
st.sidebar.markdown("Use the sliders to provide the feature values.")
|
63 |
+
|
64 |
+
# Dictionary to hold the user's input
|
65 |
+
input_features = {}
|
66 |
+
|
67 |
+
# Create sliders for all features based on your Excel file
|
68 |
+
for feature in feature_names:
|
69 |
+
# Set min/max/default values from the actual data for better usability
|
70 |
+
min_val = float(feature_data[feature].min())
|
71 |
+
max_val = float(feature_data[feature].max())
|
72 |
+
mean_val = float(feature_data[feature].mean())
|
73 |
+
|
74 |
+
# Create a slider for each feature
|
75 |
+
input_features[feature] = st.sidebar.slider(
|
76 |
+
label=f"{feature.replace('_', ' ').title()}",
|
77 |
+
min_value=min_val,
|
78 |
+
max_value=max_val,
|
79 |
+
value=mean_val,
|
80 |
+
key=f"slider_{feature}"
|
81 |
+
)
|
82 |
+
|
83 |
+
st.sidebar.write("---")
|
84 |
+
|
85 |
+
|
86 |
+
# --- 4. Prediction Logic ---
|
87 |
+
|
88 |
+
# Convert the dictionary of input features into a NumPy array
|
89 |
+
# The order of features must match the order in the feature_names list
|
90 |
+
input_data = np.array([list(input_features.values())])
|
91 |
+
|
92 |
+
# Main section for displaying inputs and results
|
93 |
+
st.header("Prediction Results")
|
94 |
+
col1, col2 = st.columns([2, 1])
|
95 |
+
|
96 |
+
with col1:
|
97 |
+
st.subheader("Current Input Values")
|
98 |
+
st.json(input_features)
|
99 |
+
|
100 |
+
# "Predict" button
|
101 |
+
if st.button("✨ Predict Diagnosis", key="predict_button"):
|
102 |
+
try:
|
103 |
+
# Make prediction. This returns the string label directly (e.g., 'M' or 'B').
|
104 |
+
prediction_label = model.predict(input_data)[0]
|
105 |
+
|
106 |
+
# Get prediction probabilities. The order corresponds to model.classes_
|
107 |
+
prediction_proba = model.predict_proba(input_data)[0]
|
108 |
+
|
109 |
+
with col2:
|
110 |
+
st.subheader("Diagnosis")
|
111 |
+
# Display the predicted label directly
|
112 |
+
# We check for 'M' or 'B' as is common in this dataset
|
113 |
+
if prediction_label.upper() == 'M':
|
114 |
+
st.error("Predicted Diagnosis: **Malignant**")
|
115 |
+
else:
|
116 |
+
st.success("Predicted Diagnosis: **Benign**")
|
117 |
+
|
118 |
+
st.subheader("Prediction Confidence")
|
119 |
+
# Get the class labels from the model itself to ensure correct order
|
120 |
+
class_labels = list(model.classes_)
|
121 |
+
|
122 |
+
# Display probabilities for each class using the model's class order
|
123 |
+
for i, label in enumerate(class_labels):
|
124 |
+
display_label = "Malignant" if label.upper() == 'M' else "Benign"
|
125 |
+
st.write(f"Confidence for **{display_label}**: `{prediction_proba[i]:.2%}`")
|
126 |
+
|
127 |
+
except Exception as e:
|
128 |
+
st.error(f"An error occurred during prediction: {e}")
|
129 |
+
|
130 |
+
st.write("---")
|