Spaces:
Running
Running
# diagnostics.py | |
import logging | |
import time | |
import os | |
from pathlib import Path | |
import pandas as pd | |
import streamlit as st | |
# Configure logging | |
logging.basicConfig( | |
level=logging.INFO, | |
format='%(asctime)s - %(name)s - %(levelname)s - %(message)s', | |
handlers=[ | |
logging.FileHandler("metadata_manager.log"), | |
logging.StreamHandler() | |
] | |
) | |
def diagnose_parquet_files(directory_path): | |
"""Diagnostic tool to verify parquet files are readable and valid""" | |
logger = logging.getLogger("ParquetDiagnostic") | |
logger.info(f"Starting parquet file diagnostics in {directory_path}") | |
dir_path = Path(directory_path) | |
if not dir_path.exists(): | |
logger.error(f"Directory does not exist: {dir_path}") | |
return False | |
all_files = list(dir_path.glob("*.parquet")) | |
logger.info(f"Found {len(all_files)} parquet files") | |
if not all_files: | |
logger.warning("No parquet files found") | |
return False | |
success_count = 0 | |
issue_count = 0 | |
total_rows = 0 | |
for file_path in all_files: | |
logger.info(f"Diagnosing file: {file_path}") | |
file_size_mb = os.path.getsize(file_path) / (1024 * 1024) | |
logger.info(f"File size: {file_size_mb:.2f} MB") | |
try: | |
# Try to read the file metadata without loading the data | |
import pyarrow.parquet as pq | |
parquet_file = pq.ParquetFile(file_path) | |
# Log schema information | |
schema = parquet_file.schema.to_arrow_schema() | |
logger.info(f"Schema: {schema}") | |
# Log file metadata | |
metadata = parquet_file.metadata | |
num_rows = metadata.num_rows | |
num_columns = len(schema.names) | |
logger.info(f"Rows: {num_rows}, Columns: {num_columns}") | |
# Try to read a small sample to verify data can be loaded | |
sample_df = pd.read_parquet(file_path, engine='pyarrow') | |
actual_rows = len(sample_df) | |
logger.info(f"Successfully read {actual_rows} rows") | |
total_rows += actual_rows | |
success_count += 1 | |
except Exception as e: | |
logger.error(f"Failed to read file {file_path}: {str(e)}", exc_info=True) | |
issue_count += 1 | |
# Try alternate engines if primary fails | |
try: | |
logger.info("Attempting to read with fastparquet engine") | |
sample_df = pd.read_parquet(file_path, engine='fastparquet') | |
logger.info(f"fastparquet succeeded, read {len(sample_df)} rows") | |
except Exception as e2: | |
logger.error(f"fastparquet also failed: {str(e2)}") | |
logger.info(f"Diagnostics complete: {success_count} files OK, {issue_count} files with issues") | |
logger.info(f"Total rows across all files: {total_rows}") | |
return success_count > 0 |