Spaces:
Running
Running
Update search_utils.py
Browse files- search_utils.py +9 -81
search_utils.py
CHANGED
@@ -145,7 +145,7 @@ class MetadataManager:
|
|
145 |
shard_path = self.shard_dir / shard
|
146 |
if not shard_path.exists():
|
147 |
logger.error(f"Shard file not found: {shard_path}")
|
148 |
-
return pd.DataFrame(columns=["title", "summary", "similarity"])
|
149 |
file_size_mb = os.path.getsize(shard_path) / (1024 * 1024)
|
150 |
logger.info(f"Loading shard file: {shard} (size: {file_size_mb:.2f} MB)")
|
151 |
try:
|
@@ -158,7 +158,7 @@ class MetadataManager:
|
|
158 |
logger.info(f"Parquet schema: {schema}")
|
159 |
except Exception:
|
160 |
pass
|
161 |
-
return pd.DataFrame(columns=["title", "summary", "similarity"])
|
162 |
df = self.loaded_shards[shard]
|
163 |
df_len = len(df)
|
164 |
valid_local_indices = [idx for idx in local_indices if 0 <= idx < df_len]
|
@@ -170,13 +170,13 @@ class MetadataManager:
|
|
170 |
return chunk
|
171 |
except Exception as e:
|
172 |
logger.error(f"Error processing shard {shard}: {str(e)}", exc_info=True)
|
173 |
-
return pd.DataFrame(columns=["title", "summary", "similarity"])
|
174 |
|
175 |
def get_metadata(self, global_indices):
|
176 |
"""Retrieve metadata for a batch of global indices using parallel shard processing."""
|
177 |
if isinstance(global_indices, np.ndarray) and global_indices.size == 0:
|
178 |
logger.warning("Empty indices array passed to get_metadata")
|
179 |
-
return pd.DataFrame(columns=["title", "summary", "similarity"])
|
180 |
|
181 |
indices_list = global_indices.tolist() if isinstance(global_indices, np.ndarray) else global_indices
|
182 |
logger.info(f"Retrieving metadata for {len(indices_list)} indices")
|
@@ -186,7 +186,7 @@ class MetadataManager:
|
|
186 |
logger.warning(f"Filtered out {invalid_count} invalid indices")
|
187 |
if not valid_indices:
|
188 |
logger.warning("No valid indices remain after filtering")
|
189 |
-
return pd.DataFrame(columns=["title", "summary", "similarity"])
|
190 |
|
191 |
# Group indices by shard
|
192 |
shard_groups = {}
|
@@ -216,69 +216,9 @@ class MetadataManager:
|
|
216 |
return combined
|
217 |
else:
|
218 |
logger.warning("No metadata records retrieved")
|
219 |
-
return pd.DataFrame(columns=["title", "summary", "similarity"])
|
220 |
|
221 |
-
def _init_url_resolver(self):
|
222 |
-
"""Initialize API session and cache."""
|
223 |
-
self.session = requests.Session()
|
224 |
-
adapter = requests.adapters.HTTPAdapter(
|
225 |
-
pool_connections=10,
|
226 |
-
pool_maxsize=10,
|
227 |
-
max_retries=3
|
228 |
-
)
|
229 |
-
self.session.mount("https://", adapter)
|
230 |
-
|
231 |
-
def resolve_url(self, title: str) -> str:
|
232 |
-
"""Optimized URL resolution with fail-fast."""
|
233 |
-
if title in self.api_cache:
|
234 |
-
return self.api_cache[title]
|
235 |
-
|
236 |
-
links = {}
|
237 |
-
arxiv_url = self._get_arxiv_url(title)
|
238 |
-
if arxiv_url:
|
239 |
-
links["arxiv"] = arxiv_url
|
240 |
-
semantic_url = self._get_semantic_url(title)
|
241 |
-
if semantic_url:
|
242 |
-
links["semantic"] = semantic_url
|
243 |
-
scholar_url = f"https://scholar.google.com/scholar?q={quote(title)}"
|
244 |
-
links["google"] = scholar_url
|
245 |
-
|
246 |
-
self.api_cache[title] = links
|
247 |
-
return links
|
248 |
-
|
249 |
-
def _get_arxiv_url(self, title: str) -> str:
|
250 |
-
"""Fast arXiv lookup with timeout."""
|
251 |
-
with self.session.get(
|
252 |
-
"http://export.arxiv.org/api/query",
|
253 |
-
params={"search_query": f'ti:"{title}"', "max_results": 1, "sortBy": "relevance"},
|
254 |
-
timeout=2
|
255 |
-
) as response:
|
256 |
-
if response.ok:
|
257 |
-
return self._parse_arxiv_response(response.text)
|
258 |
-
return ""
|
259 |
-
|
260 |
-
def _parse_arxiv_response(self, xml: str) -> str:
|
261 |
-
"""Fast XML parsing using string operations."""
|
262 |
-
if "<entry>" not in xml:
|
263 |
-
return ""
|
264 |
-
start = xml.find("<id>") + 4
|
265 |
-
end = xml.find("</id>", start)
|
266 |
-
return xml[start:end].replace("http:", "https:") if start > 3 else ""
|
267 |
-
|
268 |
-
def _get_semantic_url(self, title: str) -> str:
|
269 |
-
"""Batch-friendly Semantic Scholar lookup."""
|
270 |
-
with self.session.get(
|
271 |
-
"https://api.semanticscholar.org/graph/v1/paper/search",
|
272 |
-
params={"query": title[:200], "limit": 1},
|
273 |
-
timeout=2
|
274 |
-
) as response:
|
275 |
-
if response.ok:
|
276 |
-
data = response.json()
|
277 |
-
if data.get("data"):
|
278 |
-
return data["data"][0].get("url", "")
|
279 |
-
return ""
|
280 |
|
281 |
-
|
282 |
class SemanticSearch:
|
283 |
def __init__(self):
|
284 |
self.shard_dir = Path("compressed_shards")
|
@@ -429,9 +369,8 @@ class SemanticSearch:
|
|
429 |
self.logger.debug(f"Similarity stats: min={results['similarity'].min():.3f}, " +
|
430 |
f"max={results['similarity'].max():.3f}, " +
|
431 |
f"mean={results['similarity'].mean():.3f}")
|
432 |
-
results['source'] = results[
|
433 |
-
|
434 |
-
)
|
435 |
pre_dedup = len(results)
|
436 |
results = results.drop_duplicates(subset=["title", "source"]).sort_values("similarity", ascending=False).head(top_k)
|
437 |
post_dedup = len(results)
|
@@ -441,15 +380,4 @@ class SemanticSearch:
|
|
441 |
return results.reset_index(drop=True)
|
442 |
except Exception as e:
|
443 |
self.logger.error(f"Result processing failed: {str(e)}", exc_info=True)
|
444 |
-
return pd.DataFrame(columns=["title", "summary", "source", "similarity"])
|
445 |
-
|
446 |
-
def _format_source_links(self, links):
|
447 |
-
"""Generate an HTML snippet for the available source links."""
|
448 |
-
html_parts = []
|
449 |
-
if "arxiv" in links:
|
450 |
-
html_parts.append(f"<a class='source-link' href='{links['arxiv']}' target='_blank' rel='noopener noreferrer'> π arXiv</a>")
|
451 |
-
if "semantic" in links:
|
452 |
-
html_parts.append(f"<a class='source-link' href='{links['semantic']}' target='_blank' rel='noopener noreferrer'> π Semantic Scholar</a>")
|
453 |
-
if "google" in links:
|
454 |
-
html_parts.append(f"<a class='source-link' href='{links['google']}' target='_blank' rel='noopener noreferrer'> π Google Scholar</a>")
|
455 |
-
return " | ".join(html_parts)
|
|
|
145 |
shard_path = self.shard_dir / shard
|
146 |
if not shard_path.exists():
|
147 |
logger.error(f"Shard file not found: {shard_path}")
|
148 |
+
return pd.DataFrame(columns=["title", "summary", "similarity", "source"])
|
149 |
file_size_mb = os.path.getsize(shard_path) / (1024 * 1024)
|
150 |
logger.info(f"Loading shard file: {shard} (size: {file_size_mb:.2f} MB)")
|
151 |
try:
|
|
|
158 |
logger.info(f"Parquet schema: {schema}")
|
159 |
except Exception:
|
160 |
pass
|
161 |
+
return pd.DataFrame(columns=["title", "summary", "similarity", "source"])
|
162 |
df = self.loaded_shards[shard]
|
163 |
df_len = len(df)
|
164 |
valid_local_indices = [idx for idx in local_indices if 0 <= idx < df_len]
|
|
|
170 |
return chunk
|
171 |
except Exception as e:
|
172 |
logger.error(f"Error processing shard {shard}: {str(e)}", exc_info=True)
|
173 |
+
return pd.DataFrame(columns=["title", "summary", "similarity", "source"])
|
174 |
|
175 |
def get_metadata(self, global_indices):
|
176 |
"""Retrieve metadata for a batch of global indices using parallel shard processing."""
|
177 |
if isinstance(global_indices, np.ndarray) and global_indices.size == 0:
|
178 |
logger.warning("Empty indices array passed to get_metadata")
|
179 |
+
return pd.DataFrame(columns=["title", "summary", "similarity", "source"])
|
180 |
|
181 |
indices_list = global_indices.tolist() if isinstance(global_indices, np.ndarray) else global_indices
|
182 |
logger.info(f"Retrieving metadata for {len(indices_list)} indices")
|
|
|
186 |
logger.warning(f"Filtered out {invalid_count} invalid indices")
|
187 |
if not valid_indices:
|
188 |
logger.warning("No valid indices remain after filtering")
|
189 |
+
return pd.DataFrame(columns=["title", "summary", "similarity", "source"])
|
190 |
|
191 |
# Group indices by shard
|
192 |
shard_groups = {}
|
|
|
216 |
return combined
|
217 |
else:
|
218 |
logger.warning("No metadata records retrieved")
|
219 |
+
return pd.DataFrame(columns=["title", "summary", "similarity", "source"])
|
220 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
221 |
|
|
|
222 |
class SemanticSearch:
|
223 |
def __init__(self):
|
224 |
self.shard_dir = Path("compressed_shards")
|
|
|
369 |
self.logger.debug(f"Similarity stats: min={results['similarity'].min():.3f}, " +
|
370 |
f"max={results['similarity'].max():.3f}, " +
|
371 |
f"mean={results['similarity'].mean():.3f}")
|
372 |
+
results['source'] = results["source"]
|
373 |
+
|
|
|
374 |
pre_dedup = len(results)
|
375 |
results = results.drop_duplicates(subset=["title", "source"]).sort_values("similarity", ascending=False).head(top_k)
|
376 |
post_dedup = len(results)
|
|
|
380 |
return results.reset_index(drop=True)
|
381 |
except Exception as e:
|
382 |
self.logger.error(f"Result processing failed: {str(e)}", exc_info=True)
|
383 |
+
return pd.DataFrame(columns=["title", "summary", "source", "similarity"])
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|