Spaces:
Running
Running
Create search_utils.py
Browse files- search_utils.py +64 -0
search_utils.py
ADDED
|
@@ -0,0 +1,64 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import numpy as np
|
| 2 |
+
import pandas as pd
|
| 3 |
+
import faiss
|
| 4 |
+
from pathlib import Path
|
| 5 |
+
from sentence_transformers import SentenceTransformer, util
|
| 6 |
+
import streamlit as st
|
| 7 |
+
|
| 8 |
+
class SemanticSearch:
|
| 9 |
+
def __init__(self, shard_dir="compressed_shards"):
|
| 10 |
+
self.shard_dir = Path(shard_dir)
|
| 11 |
+
self.shard_dir.mkdir(exist_ok=True, parents=True)
|
| 12 |
+
self.model = None
|
| 13 |
+
self.index_shards = []
|
| 14 |
+
|
| 15 |
+
@st.cache_resource
|
| 16 |
+
def load_model(_self):
|
| 17 |
+
return SentenceTransformer('all-MiniLM-L6-v2')
|
| 18 |
+
|
| 19 |
+
def initialize_system(self):
|
| 20 |
+
self.model = self.load_model()
|
| 21 |
+
self._load_index_shards()
|
| 22 |
+
|
| 23 |
+
def _load_index_shards(self):
|
| 24 |
+
"""Load FAISS shards directly from local directory"""
|
| 25 |
+
for shard_path in sorted(self.shard_dir.glob("*.index")):
|
| 26 |
+
self.index_shards.append(faiss.read_index(str(shard_path)))
|
| 27 |
+
|
| 28 |
+
def search(self, query, top_k=5):
|
| 29 |
+
"""Search across all shards"""
|
| 30 |
+
query_embedding = self.model.encode([query], convert_to_numpy=True)
|
| 31 |
+
all_scores = []
|
| 32 |
+
all_indices = []
|
| 33 |
+
|
| 34 |
+
for shard_idx, index in enumerate(self.index_shards):
|
| 35 |
+
distances, indices = index.search(query_embedding, top_k)
|
| 36 |
+
# Convert local indices to global shard offsets
|
| 37 |
+
global_indices = [
|
| 38 |
+
self._calculate_global_index(shard_idx, idx)
|
| 39 |
+
for idx in indices[0]
|
| 40 |
+
]
|
| 41 |
+
all_scores.extend(distances[0])
|
| 42 |
+
all_indices.extend(global_indices)
|
| 43 |
+
|
| 44 |
+
return self._process_results(np.array(all_scores), np.array(all_indices), top_k)
|
| 45 |
+
|
| 46 |
+
def _calculate_global_index(self, shard_idx, local_idx):
|
| 47 |
+
"""Convert shard-local index to global index"""
|
| 48 |
+
# Implement your specific shard indexing logic here
|
| 49 |
+
# Example: return f"{shard_idx}-{local_idx}"
|
| 50 |
+
return local_idx # Simple version if using unique IDs
|
| 51 |
+
|
| 52 |
+
def _process_results(self, distances, indices, top_k):
|
| 53 |
+
"""Format search results"""
|
| 54 |
+
results = pd.DataFrame({
|
| 55 |
+
'global_index': indices,
|
| 56 |
+
'similarity': 1 - (distances / 2) # L2 to cosine approximation
|
| 57 |
+
})
|
| 58 |
+
return results.sort_values('similarity', ascending=False).head(top_k)
|
| 59 |
+
|
| 60 |
+
def search_with_threshold(self, query, top_k=5, similarity_threshold=0.6):
|
| 61 |
+
"""Threshold-filtered search"""
|
| 62 |
+
results = self.search(query, top_k*2)
|
| 63 |
+
filtered = results[results['similarity'] > similarity_threshold].head(top_k)
|
| 64 |
+
return filtered.reset_index(drop=True)
|