Spaces:
Sleeping
Sleeping
Update search_utils.py
Browse files- search_utils.py +128 -567
search_utils.py
CHANGED
|
@@ -1,593 +1,154 @@
|
|
| 1 |
import numpy as np
|
| 2 |
-
import pandas as pd
|
| 3 |
import faiss
|
| 4 |
import zipfile
|
| 5 |
import logging
|
| 6 |
from pathlib import Path
|
| 7 |
-
from sentence_transformers import SentenceTransformer
|
| 8 |
-
import
|
| 9 |
-
import time
|
| 10 |
import os
|
| 11 |
-
from urllib.parse import quote
|
| 12 |
import requests
|
| 13 |
-
|
|
|
|
| 14 |
|
| 15 |
# Configure logging
|
| 16 |
-
logging.basicConfig(
|
| 17 |
-
|
| 18 |
-
|
| 19 |
-
handlers=[
|
| 20 |
-
logging.StreamHandler()
|
| 21 |
-
]
|
| 22 |
-
)
|
| 23 |
-
logger = logging.getLogger("MetadataManager")
|
| 24 |
|
| 25 |
-
class
|
| 26 |
def __init__(self):
|
| 27 |
-
self.
|
| 28 |
-
self.
|
| 29 |
-
|
| 30 |
-
|
| 31 |
-
|
| 32 |
-
self.
|
| 33 |
-
|
| 34 |
-
|
| 35 |
-
|
| 36 |
-
self.
|
| 37 |
-
|
| 38 |
-
|
| 39 |
-
logger.info(f"Total shards found: {len(self.shard_map)}")
|
| 40 |
-
|
| 41 |
-
def _ensure_directories(self):
|
| 42 |
-
"""Create necessary directories if they don't exist"""
|
| 43 |
-
self.cache_dir.mkdir(parents=True, exist_ok=True)
|
| 44 |
-
self.shard_dir.mkdir(parents=True, exist_ok=True)
|
| 45 |
-
|
| 46 |
-
def _unzip_if_needed(self):
|
| 47 |
-
"""Handle ZIP extraction with nested directory handling"""
|
| 48 |
-
zip_path = Path("metadata_shards.zip")
|
| 49 |
-
|
| 50 |
-
# Check if we need to unzip by looking for parquet files in any subdirectory
|
| 51 |
-
if not any(self.shard_dir.rglob("*.parquet")):
|
| 52 |
-
logger.info("No parquet files found, checking for zip archive")
|
| 53 |
|
| 54 |
-
|
| 55 |
-
|
| 56 |
-
|
| 57 |
-
|
| 58 |
-
|
| 59 |
-
|
| 60 |
-
|
| 61 |
-
|
| 62 |
-
|
| 63 |
-
|
| 64 |
-
|
| 65 |
-
|
| 66 |
-
|
| 67 |
-
|
| 68 |
-
|
| 69 |
-
|
| 70 |
-
# Move files up from nested directory
|
| 71 |
-
self._flatten_directory(nested_dir, self.shard_dir)
|
| 72 |
-
nested_dir.rmdir()
|
| 73 |
-
|
| 74 |
-
# Verify extraction
|
| 75 |
-
parquet_files = list(self.shard_dir.rglob("*.parquet"))
|
| 76 |
-
if not parquet_files:
|
| 77 |
-
raise RuntimeError("Extraction completed but no parquet files found")
|
| 78 |
-
|
| 79 |
-
logger.info(f"Found {len(parquet_files)} parquet files after extraction")
|
| 80 |
-
|
| 81 |
-
except Exception as e:
|
| 82 |
-
logger.error(f"Failed to extract zip file: {str(e)}")
|
| 83 |
-
self._clean_failed_extraction()
|
| 84 |
-
raise
|
| 85 |
|
| 86 |
-
|
| 87 |
-
|
|
|
|
| 88 |
try:
|
| 89 |
-
|
| 90 |
-
|
| 91 |
-
|
| 92 |
-
return ""
|
| 93 |
-
except Exception as e:
|
| 94 |
-
logger.warning(f"Error detecting zip root: {str(e)}")
|
| 95 |
-
return ""
|
| 96 |
-
|
| 97 |
-
def _flatten_directory(self, src_dir, dest_dir):
|
| 98 |
-
"""Move files from nested directory to destination"""
|
| 99 |
-
for item in src_dir.iterdir():
|
| 100 |
-
if item.is_dir():
|
| 101 |
-
self._flatten_directory(item, dest_dir)
|
| 102 |
-
item.rmdir()
|
| 103 |
-
else:
|
| 104 |
-
target = dest_dir / item.name
|
| 105 |
-
if target.exists():
|
| 106 |
-
target.unlink()
|
| 107 |
-
item.rename(target)
|
| 108 |
-
|
| 109 |
-
def _clean_failed_extraction(self):
|
| 110 |
-
"""Remove any extracted files after failed attempt"""
|
| 111 |
-
logger.info("Cleaning up failed extraction")
|
| 112 |
-
for item in self.shard_dir.iterdir():
|
| 113 |
-
if item.is_dir():
|
| 114 |
-
shutil.rmtree(item)
|
| 115 |
-
else:
|
| 116 |
-
item.unlink()
|
| 117 |
-
|
| 118 |
-
def _build_shard_map(self):
|
| 119 |
-
"""Create validated index range to shard mapping"""
|
| 120 |
-
logger.info("Building shard map from parquet files")
|
| 121 |
-
parquet_files = list(self.shard_dir.glob("*.parquet"))
|
| 122 |
-
|
| 123 |
-
if not parquet_files:
|
| 124 |
-
raise FileNotFoundError("No parquet files found after extraction")
|
| 125 |
|
| 126 |
-
|
| 127 |
-
|
| 128 |
-
|
| 129 |
-
# Track expected next index
|
| 130 |
-
expected_start = 0
|
| 131 |
-
|
| 132 |
-
for f in parquet_files:
|
| 133 |
-
try:
|
| 134 |
-
parts = f.stem.split("_")
|
| 135 |
-
if len(parts) != 3:
|
| 136 |
-
raise ValueError("Invalid filename format")
|
| 137 |
-
|
| 138 |
-
start = int(parts[1])
|
| 139 |
-
end = int(parts[2])
|
| 140 |
-
|
| 141 |
-
# Validate continuity
|
| 142 |
-
if start != expected_start:
|
| 143 |
-
raise ValueError(f"Non-contiguous shard start: expected {expected_start}, got {start}")
|
| 144 |
-
|
| 145 |
-
# Validate range
|
| 146 |
-
if end <= start:
|
| 147 |
-
raise ValueError(f"Invalid shard range: {start}-{end}")
|
| 148 |
-
|
| 149 |
-
self.shard_map[(start, end)] = f.name
|
| 150 |
-
self.total_docs = end + 1
|
| 151 |
-
expected_start = end + 1
|
| 152 |
-
|
| 153 |
-
logger.debug(f"Mapped shard {f.name}: indices {start}-{end}")
|
| 154 |
-
|
| 155 |
-
except Exception as e:
|
| 156 |
-
logger.error(f"Error processing shard {f.name}: {str(e)}")
|
| 157 |
-
raise RuntimeError("Invalid shard structure") from e
|
| 158 |
-
|
| 159 |
-
logger.info(f"Validated {len(self.shard_map)} continuous shards")
|
| 160 |
-
logger.info(f"Total document count: {self.total_docs}")
|
| 161 |
-
|
| 162 |
-
# Log shard statistics
|
| 163 |
-
logger.info(f"Shard map built with {len(self.shard_map)} shards")
|
| 164 |
-
logger.info(f"Total document count: {self.total_docs}")
|
| 165 |
-
|
| 166 |
-
# Validate shard boundaries for gaps or overlaps
|
| 167 |
-
sorted_ranges = sorted(self.shard_map.keys())
|
| 168 |
-
for i in range(1, len(sorted_ranges)):
|
| 169 |
-
prev_end = sorted_ranges[i-1][1]
|
| 170 |
-
curr_start = sorted_ranges[i][0]
|
| 171 |
-
if curr_start != prev_end + 1:
|
| 172 |
-
logger.warning(f"Gap or overlap detected between shards: {prev_end} to {curr_start}")
|
| 173 |
-
|
| 174 |
-
def get_metadata(self, global_indices):
|
| 175 |
-
"""Retrieve metadata with validation"""
|
| 176 |
-
# Check for empty numpy array properly
|
| 177 |
-
if isinstance(global_indices, np.ndarray) and global_indices.size == 0:
|
| 178 |
-
logger.warning("Empty indices array passed to get_metadata")
|
| 179 |
-
return pd.DataFrame(columns=["title", "summary", "similarity"])
|
| 180 |
-
|
| 181 |
-
# Convert numpy array to list for processing
|
| 182 |
-
indices_list = global_indices.tolist() if isinstance(global_indices, np.ndarray) else global_indices
|
| 183 |
-
logger.info(f"Retrieving metadata for {len(indices_list)} indices")
|
| 184 |
-
|
| 185 |
-
# Filter valid indices
|
| 186 |
-
valid_indices = [idx for idx in indices_list if 0 <= idx < self.total_docs]
|
| 187 |
-
invalid_count = len(indices_list) - len(valid_indices)
|
| 188 |
-
if invalid_count > 0:
|
| 189 |
-
logger.warning(f"Filtered out {invalid_count} invalid indices")
|
| 190 |
-
|
| 191 |
-
if not valid_indices:
|
| 192 |
-
logger.warning("No valid indices remain after filtering")
|
| 193 |
-
return pd.DataFrame(columns=["title", "summary", "similarity"])
|
| 194 |
-
|
| 195 |
-
# Group indices by shard with boundary check
|
| 196 |
-
shard_groups = {}
|
| 197 |
-
unassigned_indices = []
|
| 198 |
-
|
| 199 |
-
for idx in valid_indices:
|
| 200 |
-
found = False
|
| 201 |
-
for (start, end), shard in self.shard_map.items():
|
| 202 |
-
if start <= idx <= end:
|
| 203 |
-
if shard not in shard_groups:
|
| 204 |
-
shard_groups[shard] = []
|
| 205 |
-
shard_groups[shard].append(idx - start)
|
| 206 |
-
found = True
|
| 207 |
-
break
|
| 208 |
-
if not found:
|
| 209 |
-
unassigned_indices.append(idx)
|
| 210 |
-
logger.warning(f"Index {idx} not found in any shard range")
|
| 211 |
-
|
| 212 |
-
if unassigned_indices:
|
| 213 |
-
logger.warning(f"Could not assign {len(unassigned_indices)} indices to any shard")
|
| 214 |
-
|
| 215 |
-
# Load and process shards
|
| 216 |
-
results = []
|
| 217 |
-
for shard, local_indices in shard_groups.items():
|
| 218 |
-
try:
|
| 219 |
-
logger.info(f"Processing shard {shard} with {len(local_indices)} indices")
|
| 220 |
-
start_time = time.time()
|
| 221 |
-
|
| 222 |
-
if shard not in self.loaded_shards:
|
| 223 |
-
logger.info(f"Loading shard file: {shard}")
|
| 224 |
-
shard_path = self.shard_dir / shard
|
| 225 |
-
|
| 226 |
-
# Verify file exists
|
| 227 |
-
if not shard_path.exists():
|
| 228 |
-
logger.error(f"Shard file not found: {shard_path}")
|
| 229 |
-
continue
|
| 230 |
-
|
| 231 |
-
# Log file size
|
| 232 |
-
file_size_mb = os.path.getsize(shard_path) / (1024 * 1024)
|
| 233 |
-
logger.info(f"Shard file size: {file_size_mb:.2f} MB")
|
| 234 |
-
|
| 235 |
-
# Attempt to read the parquet file
|
| 236 |
-
try:
|
| 237 |
-
self.loaded_shards[shard] = pd.read_parquet(
|
| 238 |
-
shard_path,
|
| 239 |
-
columns=["title", "summary"]
|
| 240 |
-
)
|
| 241 |
-
logger.info(f"Successfully loaded shard {shard} with {len(self.loaded_shards[shard])} rows")
|
| 242 |
-
except Exception as e:
|
| 243 |
-
logger.error(f"Failed to read parquet file {shard}: {str(e)}")
|
| 244 |
-
|
| 245 |
-
# Try to read file schema for debugging
|
| 246 |
-
try:
|
| 247 |
-
schema = pd.read_parquet(shard_path, engine='pyarrow').dtypes
|
| 248 |
-
logger.info(f"Parquet schema: {schema}")
|
| 249 |
-
except:
|
| 250 |
-
pass
|
| 251 |
-
continue
|
| 252 |
-
|
| 253 |
-
if local_indices:
|
| 254 |
-
# Validate indices are within dataframe bounds
|
| 255 |
-
df_len = len(self.loaded_shards[shard])
|
| 256 |
-
valid_local_indices = [idx for idx in local_indices if 0 <= idx < df_len]
|
| 257 |
-
|
| 258 |
-
if len(valid_local_indices) != len(local_indices):
|
| 259 |
-
logger.warning(f"Filtered {len(local_indices) - len(valid_local_indices)} out-of-bounds indices")
|
| 260 |
-
|
| 261 |
-
if valid_local_indices:
|
| 262 |
-
logger.debug(f"Retrieving rows at indices: {valid_local_indices}")
|
| 263 |
-
chunk = self.loaded_shards[shard].iloc[valid_local_indices]
|
| 264 |
-
results.append(chunk)
|
| 265 |
-
logger.info(f"Retrieved {len(chunk)} records from shard {shard}")
|
| 266 |
-
|
| 267 |
-
logger.info(f"Shard processing completed in {time.time() - start_time:.2f} seconds")
|
| 268 |
-
|
| 269 |
-
except Exception as e:
|
| 270 |
-
logger.error(f"Error processing shard {shard}: {str(e)}", exc_info=True)
|
| 271 |
-
continue
|
| 272 |
-
|
| 273 |
-
# Combine results
|
| 274 |
-
if results:
|
| 275 |
-
combined = pd.concat(results).reset_index(drop=True)
|
| 276 |
-
logger.info(f"Combined metadata: {len(combined)} records from {len(results)} shards")
|
| 277 |
-
return combined
|
| 278 |
-
else:
|
| 279 |
-
logger.warning("No metadata records retrieved")
|
| 280 |
-
return pd.DataFrame(columns=["title", "summary", "similarity"])
|
| 281 |
-
|
| 282 |
-
|
| 283 |
-
def _resolve_paper_url(self, title):
|
| 284 |
-
"""Find paper URL using multiple strategies"""
|
| 285 |
-
# Check cache first
|
| 286 |
-
if title in self.api_cache:
|
| 287 |
-
return self.api_cache[title]
|
| 288 |
-
|
| 289 |
-
links = {}
|
| 290 |
-
|
| 291 |
-
# Try arXiv first
|
| 292 |
-
arxiv_url = self._get_arxiv_url(title)
|
| 293 |
-
if arxiv_url:
|
| 294 |
-
links["arxiv"] = arxiv_url
|
| 295 |
-
|
| 296 |
-
# Attempt to get a direct link using Semantic Scholar's API
|
| 297 |
-
semantic_url = self._get_semantic_scholar_url(title)
|
| 298 |
-
if semantic_url:
|
| 299 |
-
links["semantic_search"] = semantic_url
|
| 300 |
-
|
| 301 |
-
|
| 302 |
-
# Fallback to Google Scholar search
|
| 303 |
-
scholar_url = f"https://scholar.google.com/scholar?q={quote(title)}"
|
| 304 |
-
links["google"] = scholar_url
|
| 305 |
-
|
| 306 |
-
self.api_cache[title] = links
|
| 307 |
-
|
| 308 |
-
return links
|
| 309 |
-
|
| 310 |
-
|
| 311 |
-
def _get_arxiv_url(self, title):
|
| 312 |
-
"""Search arXiv API for paper"""
|
| 313 |
-
try:
|
| 314 |
-
response = requests.get(
|
| 315 |
-
"http://export.arxiv.org/api/query",
|
| 316 |
-
params={
|
| 317 |
-
"search_query": f'ti:"{title}"',
|
| 318 |
-
"max_results": 1,
|
| 319 |
-
"sortBy": "relevance"
|
| 320 |
-
},
|
| 321 |
-
timeout=5
|
| 322 |
-
)
|
| 323 |
-
response.raise_for_status()
|
| 324 |
|
| 325 |
-
# Parse XML response
|
| 326 |
-
from xml.etree import ElementTree as ET
|
| 327 |
-
root = ET.fromstring(response.content)
|
| 328 |
-
entry = root.find('{http://www.w3.org/2005/Atom}entry')
|
| 329 |
-
if entry is not None:
|
| 330 |
-
arxiv_id = entry.find('{http://www.w3.org/2005/Atom}id').text
|
| 331 |
-
return arxiv_id.replace('http:', 'https:') # Force HTTPS
|
| 332 |
except Exception as e:
|
| 333 |
-
logger.
|
| 334 |
-
return None
|
| 335 |
-
|
| 336 |
-
|
| 337 |
-
|
| 338 |
-
def _get_semantic_scholar_url(self, title):
|
| 339 |
-
"""Search Semantic Scholar API for a paper by title and return its URL."""
|
| 340 |
-
try:
|
| 341 |
-
response = requests.get(
|
| 342 |
-
"https://api.semanticscholar.org/graph/v1/paper/search",
|
| 343 |
-
params={
|
| 344 |
-
"query": title,
|
| 345 |
-
"limit": 1,
|
| 346 |
-
"fields": "paperId,url,title"
|
| 347 |
-
},
|
| 348 |
-
timeout=5
|
| 349 |
-
)
|
| 350 |
-
response.raise_for_status() # This raises for 429 or other errors
|
| 351 |
-
data = response.json()
|
| 352 |
|
| 353 |
-
|
| 354 |
-
|
| 355 |
-
|
| 356 |
-
|
| 357 |
-
|
| 358 |
-
|
| 359 |
-
|
| 360 |
-
|
| 361 |
-
|
| 362 |
-
|
| 363 |
-
|
| 364 |
-
|
| 365 |
-
|
| 366 |
-
|
| 367 |
-
|
| 368 |
-
|
| 369 |
-
|
| 370 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 371 |
def __init__(self):
|
| 372 |
-
self.
|
| 373 |
-
self.
|
| 374 |
-
self.
|
| 375 |
-
self.metadata_mgr = MetadataManager()
|
| 376 |
-
self.shard_sizes = []
|
| 377 |
|
| 378 |
-
|
| 379 |
-
|
| 380 |
-
self.
|
| 381 |
-
|
| 382 |
-
@st.cache_resource
|
| 383 |
-
def load_model(_self):
|
| 384 |
-
return SentenceTransformer('all-MiniLM-L6-v2')
|
| 385 |
-
|
| 386 |
-
def initialize_system(self):
|
| 387 |
-
self.logger.info("Loading sentence transformer model")
|
| 388 |
-
start_time = time.time()
|
| 389 |
-
self.model = self.load_model()
|
| 390 |
-
self.logger.info(f"Model loaded in {time.time() - start_time:.2f} seconds")
|
| 391 |
-
|
| 392 |
-
self.logger.info("Loading FAISS indices")
|
| 393 |
-
self._load_faiss_shards()
|
| 394 |
|
| 395 |
-
def
|
| 396 |
-
"""
|
| 397 |
-
|
| 398 |
-
|
| 399 |
-
if not self.shard_dir.exists():
|
| 400 |
-
self.logger.error(f"Shard directory not found: {self.shard_dir}")
|
| 401 |
-
return
|
| 402 |
-
|
| 403 |
-
index_files = list(self.shard_dir.glob("*.index"))
|
| 404 |
-
self.logger.info(f"Found {len(index_files)} index files")
|
| 405 |
|
| 406 |
-
|
| 407 |
-
self.
|
| 408 |
|
| 409 |
-
|
| 410 |
-
|
| 411 |
-
self.logger.info(f"Loading index: {shard_path}")
|
| 412 |
-
start_time = time.time()
|
| 413 |
-
|
| 414 |
-
# Log file size
|
| 415 |
-
file_size_mb = os.path.getsize(shard_path) / (1024 * 1024)
|
| 416 |
-
self.logger.info(f"Index file size: {file_size_mb:.2f} MB")
|
| 417 |
-
|
| 418 |
-
index = faiss.read_index(str(shard_path))
|
| 419 |
-
self.index_shards.append(index)
|
| 420 |
-
self.shard_sizes.append(index.ntotal)
|
| 421 |
-
|
| 422 |
-
self.logger.info(f"Loaded index with {index.ntotal} vectors in {time.time() - start_time:.2f} seconds")
|
| 423 |
-
except Exception as e:
|
| 424 |
-
self.logger.error(f"Failed to load index {shard_path}: {str(e)}")
|
| 425 |
-
|
| 426 |
-
total_vectors = sum(self.shard_sizes)
|
| 427 |
-
self.logger.info(f"Total loaded vectors: {total_vectors} across {len(self.index_shards)} shards")
|
| 428 |
-
|
| 429 |
-
def _global_index(self, shard_idx, local_idx):
|
| 430 |
-
"""Convert local index to global index"""
|
| 431 |
-
return sum(self.shard_sizes[:shard_idx]) + local_idx
|
| 432 |
-
|
| 433 |
-
def search(self, query, top_k=5):
|
| 434 |
-
"""Search with validation"""
|
| 435 |
-
self.logger.info(f"Searching for query: '{query}' (top_k={top_k})")
|
| 436 |
-
start_time = time.time()
|
| 437 |
-
|
| 438 |
-
if not query:
|
| 439 |
-
self.logger.warning("Empty query provided")
|
| 440 |
-
return pd.DataFrame()
|
| 441 |
-
|
| 442 |
-
if not self.index_shards:
|
| 443 |
-
self.logger.error("No index shards loaded")
|
| 444 |
-
return pd.DataFrame()
|
| 445 |
-
|
| 446 |
-
try:
|
| 447 |
-
self.logger.info("Encoding query")
|
| 448 |
-
query_embedding = self.model.encode([query], convert_to_numpy=True)
|
| 449 |
-
self.logger.debug(f"Query encoded to shape {query_embedding.shape}")
|
| 450 |
-
except Exception as e:
|
| 451 |
-
self.logger.error(f"Query encoding failed: {str(e)}")
|
| 452 |
-
return pd.DataFrame()
|
| 453 |
-
|
| 454 |
-
all_distances = []
|
| 455 |
-
all_global_indices = []
|
| 456 |
-
|
| 457 |
-
# Search with index validation
|
| 458 |
-
self.logger.info(f"Searching across {len(self.index_shards)} shards")
|
| 459 |
-
for shard_idx, index in enumerate(self.index_shards):
|
| 460 |
-
if index.ntotal == 0:
|
| 461 |
-
self.logger.warning(f"Skipping empty shard {shard_idx}")
|
| 462 |
-
continue
|
| 463 |
-
|
| 464 |
-
try:
|
| 465 |
-
shard_start = time.time()
|
| 466 |
-
distances, indices = index.search(query_embedding, top_k)
|
| 467 |
-
|
| 468 |
-
valid_mask = (indices[0] >= 0) & (indices[0] < index.ntotal)
|
| 469 |
-
valid_indices = indices[0][valid_mask].tolist()
|
| 470 |
-
valid_distances = distances[0][valid_mask].tolist()
|
| 471 |
-
|
| 472 |
-
if len(valid_indices) != top_k:
|
| 473 |
-
self.logger.debug(f"Shard {shard_idx}: Found {len(valid_indices)} valid results out of {top_k}")
|
| 474 |
-
|
| 475 |
-
global_indices = [self._global_index(shard_idx, idx) for idx in valid_indices]
|
| 476 |
-
|
| 477 |
-
all_distances.extend(valid_distances)
|
| 478 |
-
all_global_indices.extend(global_indices)
|
| 479 |
-
|
| 480 |
-
self.logger.debug(f"Shard {shard_idx} search completed in {time.time() - shard_start:.3f}s")
|
| 481 |
-
except Exception as e:
|
| 482 |
-
self.logger.error(f"Search failed in shard {shard_idx}: {str(e)}")
|
| 483 |
-
continue
|
| 484 |
-
|
| 485 |
-
self.logger.info(f"Search found {len(all_global_indices)} results across all shards")
|
| 486 |
|
| 487 |
# Process results
|
| 488 |
-
|
| 489 |
-
|
| 490 |
-
|
| 491 |
-
|
| 492 |
-
)
|
| 493 |
-
|
| 494 |
-
|
| 495 |
-
|
| 496 |
-
|
| 497 |
-
|
| 498 |
-
|
| 499 |
-
|
| 500 |
-
|
| 501 |
-
# Proper numpy array emptiness checks
|
| 502 |
-
if global_indices.size == 0 or distances.size == 0:
|
| 503 |
-
self.logger.warning("No search results to process")
|
| 504 |
-
return pd.DataFrame(columns=["title", "summary", "source", "similarity"])
|
| 505 |
-
|
| 506 |
-
try:
|
| 507 |
-
# Get metadata for matched indices
|
| 508 |
-
self.logger.info(f"Retrieving metadata for {len(global_indices)} indices")
|
| 509 |
-
metadata_start = time.time()
|
| 510 |
-
results = self.metadata_mgr.get_metadata(global_indices)
|
| 511 |
-
self.logger.info(f"Metadata retrieved in {time.time() - metadata_start:.2f}s, got {len(results)} records")
|
| 512 |
-
|
| 513 |
-
# Empty results check
|
| 514 |
-
if len(results) == 0:
|
| 515 |
-
self.logger.warning("No metadata found for indices")
|
| 516 |
-
return pd.DataFrame(columns=["title", "summary", "source", "similarity"])
|
| 517 |
-
|
| 518 |
-
# Ensure distances match results length
|
| 519 |
-
if len(results) != len(distances):
|
| 520 |
-
self.logger.warning(f"Mismatch between distances ({len(distances)}) and results ({len(results)})")
|
| 521 |
-
|
| 522 |
-
if len(results) < len(distances):
|
| 523 |
-
self.logger.info("Truncating distances array to match results length")
|
| 524 |
-
distances = distances[:len(results)]
|
| 525 |
-
else:
|
| 526 |
-
# Should not happen but handle it anyway
|
| 527 |
-
self.logger.error("More results than distances - this shouldn't happen")
|
| 528 |
-
distances = np.pad(distances, (0, len(results) - len(distances)), 'constant', constant_values=1.0)
|
| 529 |
-
|
| 530 |
-
# Calculate similarity scores
|
| 531 |
-
self.logger.debug("Calculating similarity scores")
|
| 532 |
-
results['similarity'] = 1 - (distances / 2)
|
| 533 |
-
|
| 534 |
-
# Log similarity statistics
|
| 535 |
-
if not results.empty:
|
| 536 |
-
self.logger.debug(f"Similarity stats: min={results['similarity'].min():.3f}, " +
|
| 537 |
-
f"max={results['similarity'].max():.3f}, " +
|
| 538 |
-
f"mean={results['similarity'].mean():.3f}")
|
| 539 |
-
|
| 540 |
-
|
| 541 |
-
results['source'] = results['title'].apply(
|
| 542 |
-
lambda title: self._format_source_links(
|
| 543 |
-
self.metadata_mgr._resolve_paper_url(title)
|
| 544 |
-
)
|
| 545 |
-
)
|
| 546 |
|
| 547 |
-
#
|
| 548 |
-
|
| 549 |
-
|
| 550 |
-
|
| 551 |
-
|
| 552 |
-
|
| 553 |
-
|
| 554 |
-
|
| 555 |
-
|
| 556 |
-
|
| 557 |
-
|
| 558 |
-
|
| 559 |
-
|
| 560 |
-
|
| 561 |
-
|
| 562 |
-
|
| 563 |
-
|
| 564 |
-
|
| 565 |
-
)
|
| 566 |
-
|
| 567 |
-
|
| 568 |
-
# Deduplicate based on title only
|
| 569 |
-
final_results = final_results.drop_duplicates(subset=["title"]).head(top_k)
|
| 570 |
-
|
| 571 |
-
return final_results.reset_index(drop=True)
|
| 572 |
-
|
| 573 |
-
except Exception as e:
|
| 574 |
-
self.logger.error(f"Result processing failed: {str(e)}", exc_info=True)
|
| 575 |
-
return pd.DataFrame(columns=["title", "summary", "similarity"])
|
| 576 |
-
|
| 577 |
-
|
| 578 |
-
def _format_source_links(self, links):
|
| 579 |
-
"""Generate an HTML snippet for the available source links."""
|
| 580 |
-
html_parts = []
|
| 581 |
-
if "arxiv" in links:
|
| 582 |
-
html_parts.append(
|
| 583 |
-
f"<a class='source-link' href='{links['arxiv']}' target='_blank' rel='noopener noreferrer'> 📜 arXiv</a>"
|
| 584 |
-
)
|
| 585 |
-
if "semantic" in links:
|
| 586 |
-
html_parts.append(
|
| 587 |
-
f"<a class='source-link' href='{links['semantic']}' target='_blank' rel='noopener noreferrer'> 🌐 Semantic Scholar</a>"
|
| 588 |
-
)
|
| 589 |
-
if "google" in links:
|
| 590 |
-
html_parts.append(
|
| 591 |
-
f"<a class='source-link' href='{links['google']}' target='_blank' rel='noopener noreferrer'> 🔍 Google Scholar</a>"
|
| 592 |
-
)
|
| 593 |
-
return " | ".join(html_parts)
|
|
|
|
| 1 |
import numpy as np
|
|
|
|
| 2 |
import faiss
|
| 3 |
import zipfile
|
| 4 |
import logging
|
| 5 |
from pathlib import Path
|
| 6 |
+
from sentence_transformers import SentenceTransformer
|
| 7 |
+
import concurrent.futures
|
|
|
|
| 8 |
import os
|
|
|
|
| 9 |
import requests
|
| 10 |
+
from functools import lru_cache
|
| 11 |
+
from typing import List, Dict
|
| 12 |
|
| 13 |
# Configure logging
|
| 14 |
+
logging.basicConfig(level=logging.WARNING,
|
| 15 |
+
format='%(asctime)s - %(name)s - %(levelname)s - %(message)s')
|
| 16 |
+
logger = logging.getLogger("OptimizedSearch")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 17 |
|
| 18 |
+
class OptimizedMetadataManager:
|
| 19 |
def __init__(self):
|
| 20 |
+
self._init_metadata()
|
| 21 |
+
self._init_url_resolver()
|
| 22 |
+
|
| 23 |
+
def _init_metadata(self):
|
| 24 |
+
"""Memory-mapped metadata loading"""
|
| 25 |
+
self.metadata_dir = Path("unzipped_cache/metadata_shards")
|
| 26 |
+
self.metadata = {}
|
| 27 |
+
|
| 28 |
+
# Preload all metadata into memory
|
| 29 |
+
for parquet_file in self.metadata_dir.glob("*.parquet"):
|
| 30 |
+
df = pd.read_parquet(parquet_file, columns=["title", "summary"])
|
| 31 |
+
self.metadata.update(df.to_dict(orient="index"))
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 32 |
|
| 33 |
+
self.total_docs = len(self.metadata)
|
| 34 |
+
logger.info(f"Loaded {self.total_docs} metadata entries into memory")
|
| 35 |
+
|
| 36 |
+
def get_metadata_batch(self, indices: np.ndarray) -> List[Dict]:
|
| 37 |
+
"""Batch retrieval of metadata"""
|
| 38 |
+
return [self.metadata.get(idx, {"title": "", "summary": ""}) for idx in indices]
|
| 39 |
+
|
| 40 |
+
def _init_url_resolver(self):
|
| 41 |
+
"""Initialize API session and cache"""
|
| 42 |
+
self.session = requests.Session()
|
| 43 |
+
adapter = requests.adapters.HTTPAdapter(
|
| 44 |
+
pool_connections=10,
|
| 45 |
+
pool_maxsize=10,
|
| 46 |
+
max_retries=3
|
| 47 |
+
)
|
| 48 |
+
self.session.mount("https://", adapter)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 49 |
|
| 50 |
+
@lru_cache(maxsize=10_000)
|
| 51 |
+
def resolve_url(self, title: str) -> str:
|
| 52 |
+
"""Optimized URL resolution with fail-fast"""
|
| 53 |
try:
|
| 54 |
+
# Try arXiv first
|
| 55 |
+
arxiv_url = self._get_arxiv_url(title)
|
| 56 |
+
if arxiv_url: return arxiv_url
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 57 |
|
| 58 |
+
# Fallback to Semantic Scholar
|
| 59 |
+
semantic_url = self._get_semantic_url(title)
|
| 60 |
+
if semantic_url: return semantic_url
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 61 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 62 |
except Exception as e:
|
| 63 |
+
logger.warning(f"URL resolution failed: {str(e)}")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 64 |
|
| 65 |
+
return f"https://scholar.google.com/scholar?q={quote(title)}"
|
| 66 |
+
|
| 67 |
+
def _get_arxiv_url(self, title: str) -> str:
|
| 68 |
+
"""Fast arXiv lookup with timeout"""
|
| 69 |
+
with self.session.get(
|
| 70 |
+
"http://export.arxiv.org/api/query",
|
| 71 |
+
params={"search_query": f'ti:"{title}"', "max_results": 1},
|
| 72 |
+
timeout=2
|
| 73 |
+
) as response:
|
| 74 |
+
if response.ok:
|
| 75 |
+
return self._parse_arxiv_response(response.text)
|
| 76 |
+
return ""
|
| 77 |
+
|
| 78 |
+
def _parse_arxiv_response(self, xml: str) -> str:
|
| 79 |
+
"""Fast XML parsing using string operations"""
|
| 80 |
+
if "<entry>" not in xml: return ""
|
| 81 |
+
start = xml.find("<id>") + 4
|
| 82 |
+
end = xml.find("</id>", start)
|
| 83 |
+
return xml[start:end].replace("http:", "https:") if start > 3 else ""
|
| 84 |
+
|
| 85 |
+
def _get_semantic_url(self, title: str) -> str:
|
| 86 |
+
"""Batch-friendly Semantic Scholar lookup"""
|
| 87 |
+
with self.session.get(
|
| 88 |
+
"https://api.semanticscholar.org/graph/v1/paper/search",
|
| 89 |
+
params={"query": title[:200], "limit": 1},
|
| 90 |
+
timeout=2
|
| 91 |
+
) as response:
|
| 92 |
+
if response.ok:
|
| 93 |
+
data = response.json()
|
| 94 |
+
if data.get("data"):
|
| 95 |
+
return data["data"][0].get("url", "")
|
| 96 |
+
return ""
|
| 97 |
+
|
| 98 |
+
class OptimizedSemanticSearch:
|
| 99 |
def __init__(self):
|
| 100 |
+
self.model = SentenceTransformer('all-MiniLM-L6-v2')
|
| 101 |
+
self._load_faiss_indexes()
|
| 102 |
+
self.metadata_mgr = OptimizedMetadataManager()
|
|
|
|
|
|
|
| 103 |
|
| 104 |
+
def _load_faiss_indexes(self):
|
| 105 |
+
"""Load indexes with memory mapping"""
|
| 106 |
+
self.index = faiss.read_index("combined_index.faiss", faiss.IO_FLAG_MMAP | faiss.IO_FLAG_READ_ONLY)
|
| 107 |
+
logger.info(f"Loaded FAISS index with {self.index.ntotal} vectors")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 108 |
|
| 109 |
+
def search(self, query: str, top_k: int = 5) -> List[Dict]:
|
| 110 |
+
"""Optimized search pipeline"""
|
| 111 |
+
# Batch encode query
|
| 112 |
+
query_embedding = self.model.encode([query], convert_to_numpy=True)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 113 |
|
| 114 |
+
# FAISS search
|
| 115 |
+
distances, indices = self.index.search(query_embedding, top_k*2) # Search extra for dedup
|
| 116 |
|
| 117 |
+
# Batch metadata retrieval
|
| 118 |
+
results = self.metadata_mgr.get_metadata_batch(indices[0])
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 119 |
|
| 120 |
# Process results
|
| 121 |
+
return self._process_results(results, distances[0], top_k)
|
| 122 |
+
|
| 123 |
+
def _process_results(self, results: List[Dict], distances: np.ndarray, top_k: int) -> List[Dict]:
|
| 124 |
+
"""Parallel result processing"""
|
| 125 |
+
with concurrent.futures.ThreadPoolExecutor() as executor:
|
| 126 |
+
# Parallel URL resolution
|
| 127 |
+
futures = {
|
| 128 |
+
executor.submit(
|
| 129 |
+
self.metadata_mgr.resolve_url,
|
| 130 |
+
res["title"]
|
| 131 |
+
): idx for idx, res in enumerate(results)
|
| 132 |
+
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 133 |
|
| 134 |
+
# Update results as URLs resolve
|
| 135 |
+
for future in concurrent.futures.as_completed(futures):
|
| 136 |
+
idx = futures[future]
|
| 137 |
+
try:
|
| 138 |
+
results[idx]["source"] = future.result()
|
| 139 |
+
except Exception as e:
|
| 140 |
+
results[idx]["source"] = ""
|
| 141 |
+
|
| 142 |
+
# Add similarity scores
|
| 143 |
+
for idx, dist in enumerate(distances[:len(results)]):
|
| 144 |
+
results[idx]["similarity"] = 1 - (dist / 2)
|
| 145 |
+
|
| 146 |
+
# Deduplicate and sort
|
| 147 |
+
seen = set()
|
| 148 |
+
final_results = []
|
| 149 |
+
for res in sorted(results, key=lambda x: x["similarity"], reverse=True):
|
| 150 |
+
if res["title"] not in seen and len(final_results) < top_k:
|
| 151 |
+
seen.add(res["title"])
|
| 152 |
+
final_results.append(res)
|
| 153 |
+
|
| 154 |
+
return final_results
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|