Spaces:
Running
Running
Update search_utils.py
Browse files- search_utils.py +243 -38
search_utils.py
CHANGED
@@ -2,9 +2,22 @@ import numpy as np
|
|
2 |
import pandas as pd
|
3 |
import faiss
|
4 |
import zipfile
|
|
|
5 |
from pathlib import Path
|
6 |
from sentence_transformers import SentenceTransformer, util
|
7 |
import streamlit as st
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
8 |
|
9 |
class MetadataManager:
|
10 |
def __init__(self):
|
@@ -12,45 +25,94 @@ class MetadataManager:
|
|
12 |
self.shard_map = {}
|
13 |
self.loaded_shards = {}
|
14 |
self.total_docs = 0
|
15 |
-
|
|
|
|
|
16 |
self._build_shard_map()
|
|
|
|
|
17 |
|
18 |
def _ensure_unzipped(self):
|
19 |
"""Handle ZIP extraction without Streamlit elements"""
|
|
|
20 |
if not self.shard_dir.exists():
|
21 |
zip_path = Path("metadata_shards.zip")
|
|
|
22 |
if zip_path.exists():
|
|
|
|
|
23 |
with zipfile.ZipFile(zip_path, 'r') as zip_ref:
|
24 |
zip_ref.extractall(self.shard_dir)
|
|
|
25 |
else:
|
26 |
-
|
|
|
|
|
|
|
|
|
27 |
|
28 |
def _build_shard_map(self):
|
29 |
"""Create index range to shard mapping"""
|
|
|
30 |
self.total_docs = 0
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
37 |
|
38 |
def get_metadata(self, global_indices):
|
39 |
"""Retrieve metadata with validation"""
|
40 |
# Check for empty numpy array properly
|
41 |
if isinstance(global_indices, np.ndarray) and global_indices.size == 0:
|
|
|
42 |
return pd.DataFrame(columns=["title", "summary", "source", "similarity"])
|
43 |
|
44 |
# Convert numpy array to list for processing
|
45 |
indices_list = global_indices.tolist() if isinstance(global_indices, np.ndarray) else global_indices
|
|
|
46 |
|
47 |
# Filter valid indices
|
48 |
valid_indices = [idx for idx in indices_list if 0 <= idx < self.total_docs]
|
|
|
|
|
|
|
|
|
49 |
if not valid_indices:
|
|
|
50 |
return pd.DataFrame(columns=["title", "summary", "source", "similarity"])
|
51 |
|
52 |
# Group indices by shard with boundary check
|
53 |
shard_groups = {}
|
|
|
|
|
54 |
for idx in valid_indices:
|
55 |
found = False
|
56 |
for (start, end), shard in self.shard_map.items():
|
@@ -61,49 +123,137 @@ class MetadataManager:
|
|
61 |
found = True
|
62 |
break
|
63 |
if not found:
|
64 |
-
|
|
|
|
|
|
|
|
|
65 |
|
66 |
# Load and process shards
|
67 |
results = []
|
68 |
for shard, local_indices in shard_groups.items():
|
69 |
try:
|
|
|
|
|
|
|
70 |
if shard not in self.loaded_shards:
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
75 |
|
76 |
if local_indices:
|
77 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
78 |
except Exception as e:
|
79 |
-
|
80 |
continue
|
81 |
|
82 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
83 |
|
84 |
class SemanticSearch:
|
85 |
def __init__(self):
|
86 |
self.shard_dir = Path("compressed_shards")
|
87 |
self.model = None
|
88 |
self.index_shards = []
|
89 |
-
self.metadata_mgr = MetadataManager()
|
90 |
self.shard_sizes = []
|
91 |
|
|
|
|
|
|
|
|
|
92 |
@st.cache_resource
|
93 |
def load_model(_self):
|
94 |
return SentenceTransformer('all-MiniLM-L6-v2')
|
95 |
|
96 |
def initialize_system(self):
|
|
|
|
|
97 |
self.model = self.load_model()
|
|
|
|
|
|
|
98 |
self._load_faiss_shards()
|
99 |
|
100 |
def _load_faiss_shards(self):
|
101 |
"""Load all FAISS index shards"""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
102 |
self.shard_sizes = []
|
103 |
-
|
104 |
-
|
105 |
-
|
106 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
107 |
|
108 |
def _global_index(self, shard_idx, local_idx):
|
109 |
"""Convert local index to global index"""
|
@@ -111,67 +261,122 @@ class SemanticSearch:
|
|
111 |
|
112 |
def search(self, query, top_k=5):
|
113 |
"""Search with validation"""
|
114 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
115 |
return pd.DataFrame()
|
116 |
|
117 |
try:
|
|
|
118 |
query_embedding = self.model.encode([query], convert_to_numpy=True)
|
|
|
119 |
except Exception as e:
|
120 |
-
|
121 |
return pd.DataFrame()
|
122 |
|
123 |
all_distances = []
|
124 |
all_global_indices = []
|
125 |
|
126 |
# Search with index validation
|
|
|
127 |
for shard_idx, index in enumerate(self.index_shards):
|
128 |
if index.ntotal == 0:
|
|
|
129 |
continue
|
130 |
|
131 |
try:
|
|
|
132 |
distances, indices = index.search(query_embedding, top_k)
|
133 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
134 |
global_indices = [self._global_index(shard_idx, idx) for idx in valid_indices]
|
135 |
|
136 |
-
all_distances.extend(
|
137 |
all_global_indices.extend(global_indices)
|
|
|
|
|
138 |
except Exception as e:
|
139 |
-
|
140 |
continue
|
141 |
|
142 |
-
|
143 |
-
|
144 |
-
|
145 |
-
|
146 |
-
np.array(
|
|
|
147 |
top_k
|
148 |
)
|
|
|
|
|
|
|
149 |
|
150 |
def _process_results(self, distances, global_indices, top_k):
|
151 |
"""Process raw search results into formatted DataFrame"""
|
|
|
|
|
152 |
# Proper numpy array emptiness checks
|
153 |
if global_indices.size == 0 or distances.size == 0:
|
|
|
154 |
return pd.DataFrame(columns=["title", "summary", "source", "similarity"])
|
155 |
|
156 |
try:
|
157 |
-
# Convert numpy indices to Python list for metadata retrieval
|
158 |
-
indices_list = global_indices.tolist()
|
159 |
-
|
160 |
# Get metadata for matched indices
|
161 |
-
|
|
|
|
|
|
|
162 |
|
|
|
|
|
|
|
|
|
|
|
163 |
# Ensure distances match results length
|
164 |
if len(results) != len(distances):
|
165 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
166 |
|
167 |
# Calculate similarity scores
|
|
|
168 |
results['similarity'] = 1 - (distances / 2)
|
169 |
|
|
|
|
|
|
|
|
|
|
|
|
|
170 |
# Deduplicate and sort results
|
|
|
171 |
results = results.drop_duplicates(subset=["title", "source"]).sort_values("similarity", ascending=False).head(top_k)
|
|
|
172 |
|
|
|
|
|
|
|
|
|
173 |
return results.reset_index(drop=True)
|
174 |
|
175 |
except Exception as e:
|
176 |
-
|
177 |
-
return pd.DataFrame(columns=["title", "summary", "source", "similarity"])
|
|
|
2 |
import pandas as pd
|
3 |
import faiss
|
4 |
import zipfile
|
5 |
+
import logging
|
6 |
from pathlib import Path
|
7 |
from sentence_transformers import SentenceTransformer, util
|
8 |
import streamlit as st
|
9 |
+
import time
|
10 |
+
import os
|
11 |
+
|
12 |
+
# Configure logging
|
13 |
+
logging.basicConfig(
|
14 |
+
level=logging.INFO,
|
15 |
+
format='%(asctime)s - %(name)s - %(levelname)s - %(message)s',
|
16 |
+
handlers=[
|
17 |
+
logging.StreamHandler()
|
18 |
+
]
|
19 |
+
)
|
20 |
+
logger = logging.getLogger("MetadataManager")
|
21 |
|
22 |
class MetadataManager:
|
23 |
def __init__(self):
|
|
|
25 |
self.shard_map = {}
|
26 |
self.loaded_shards = {}
|
27 |
self.total_docs = 0
|
28 |
+
|
29 |
+
logger.info("Initializing MetadataManager")
|
30 |
+
self._ensure_unzipped()
|
31 |
self._build_shard_map()
|
32 |
+
logger.info(f"Total documents indexed: {self.total_docs}")
|
33 |
+
logger.info(f"Total shards found: {len(self.shard_map)}")
|
34 |
|
35 |
def _ensure_unzipped(self):
|
36 |
"""Handle ZIP extraction without Streamlit elements"""
|
37 |
+
logger.info(f"Checking for shard directory: {self.shard_dir}")
|
38 |
if not self.shard_dir.exists():
|
39 |
zip_path = Path("metadata_shards.zip")
|
40 |
+
logger.info(f"Shard directory not found, looking for zip file: {zip_path}")
|
41 |
if zip_path.exists():
|
42 |
+
logger.info(f"Extracting from zip file: {zip_path}")
|
43 |
+
start_time = time.time()
|
44 |
with zipfile.ZipFile(zip_path, 'r') as zip_ref:
|
45 |
zip_ref.extractall(self.shard_dir)
|
46 |
+
logger.info(f"Extraction completed in {time.time() - start_time:.2f} seconds")
|
47 |
else:
|
48 |
+
error_msg = "Metadata ZIP file not found"
|
49 |
+
logger.error(error_msg)
|
50 |
+
raise FileNotFoundError(error_msg)
|
51 |
+
else:
|
52 |
+
logger.info("Shard directory exists, skipping extraction")
|
53 |
|
54 |
def _build_shard_map(self):
|
55 |
"""Create index range to shard mapping"""
|
56 |
+
logger.info("Building shard map from parquet files")
|
57 |
self.total_docs = 0
|
58 |
+
shard_files = list(self.shard_dir.glob("*.parquet"))
|
59 |
+
logger.info(f"Found {len(shard_files)} parquet files")
|
60 |
+
|
61 |
+
if not shard_files:
|
62 |
+
logger.warning("No parquet files found in shard directory")
|
63 |
+
|
64 |
+
for f in sorted(shard_files):
|
65 |
+
try:
|
66 |
+
parts = f.stem.split("_")
|
67 |
+
if len(parts) < 3:
|
68 |
+
logger.warning(f"Skipping file with invalid name format: {f}")
|
69 |
+
continue
|
70 |
+
|
71 |
+
start = int(parts[1])
|
72 |
+
end = int(parts[2])
|
73 |
+
self.shard_map[(start, end)] = f.name
|
74 |
+
self.total_docs = max(self.total_docs, end + 1)
|
75 |
+
logger.debug(f"Mapped shard {f.name}: indices {start}-{end}")
|
76 |
+
except Exception as e:
|
77 |
+
logger.error(f"Error parsing shard filename {f}: {str(e)}")
|
78 |
+
|
79 |
+
# Log shard statistics
|
80 |
+
logger.info(f"Shard map built with {len(self.shard_map)} shards")
|
81 |
+
logger.info(f"Total document count: {self.total_docs}")
|
82 |
+
|
83 |
+
# Validate shard boundaries for gaps or overlaps
|
84 |
+
sorted_ranges = sorted(self.shard_map.keys())
|
85 |
+
for i in range(1, len(sorted_ranges)):
|
86 |
+
prev_end = sorted_ranges[i-1][1]
|
87 |
+
curr_start = sorted_ranges[i][0]
|
88 |
+
if curr_start != prev_end + 1:
|
89 |
+
logger.warning(f"Gap or overlap detected between shards: {prev_end} to {curr_start}")
|
90 |
|
91 |
def get_metadata(self, global_indices):
|
92 |
"""Retrieve metadata with validation"""
|
93 |
# Check for empty numpy array properly
|
94 |
if isinstance(global_indices, np.ndarray) and global_indices.size == 0:
|
95 |
+
logger.warning("Empty indices array passed to get_metadata")
|
96 |
return pd.DataFrame(columns=["title", "summary", "source", "similarity"])
|
97 |
|
98 |
# Convert numpy array to list for processing
|
99 |
indices_list = global_indices.tolist() if isinstance(global_indices, np.ndarray) else global_indices
|
100 |
+
logger.info(f"Retrieving metadata for {len(indices_list)} indices")
|
101 |
|
102 |
# Filter valid indices
|
103 |
valid_indices = [idx for idx in indices_list if 0 <= idx < self.total_docs]
|
104 |
+
invalid_count = len(indices_list) - len(valid_indices)
|
105 |
+
if invalid_count > 0:
|
106 |
+
logger.warning(f"Filtered out {invalid_count} invalid indices")
|
107 |
+
|
108 |
if not valid_indices:
|
109 |
+
logger.warning("No valid indices remain after filtering")
|
110 |
return pd.DataFrame(columns=["title", "summary", "source", "similarity"])
|
111 |
|
112 |
# Group indices by shard with boundary check
|
113 |
shard_groups = {}
|
114 |
+
unassigned_indices = []
|
115 |
+
|
116 |
for idx in valid_indices:
|
117 |
found = False
|
118 |
for (start, end), shard in self.shard_map.items():
|
|
|
123 |
found = True
|
124 |
break
|
125 |
if not found:
|
126 |
+
unassigned_indices.append(idx)
|
127 |
+
logger.warning(f"Index {idx} not found in any shard range")
|
128 |
+
|
129 |
+
if unassigned_indices:
|
130 |
+
logger.warning(f"Could not assign {len(unassigned_indices)} indices to any shard")
|
131 |
|
132 |
# Load and process shards
|
133 |
results = []
|
134 |
for shard, local_indices in shard_groups.items():
|
135 |
try:
|
136 |
+
logger.info(f"Processing shard {shard} with {len(local_indices)} indices")
|
137 |
+
start_time = time.time()
|
138 |
+
|
139 |
if shard not in self.loaded_shards:
|
140 |
+
logger.info(f"Loading shard file: {shard}")
|
141 |
+
shard_path = self.shard_dir / shard
|
142 |
+
|
143 |
+
# Verify file exists
|
144 |
+
if not shard_path.exists():
|
145 |
+
logger.error(f"Shard file not found: {shard_path}")
|
146 |
+
continue
|
147 |
+
|
148 |
+
# Log file size
|
149 |
+
file_size_mb = os.path.getsize(shard_path) / (1024 * 1024)
|
150 |
+
logger.info(f"Shard file size: {file_size_mb:.2f} MB")
|
151 |
+
|
152 |
+
# Attempt to read the parquet file
|
153 |
+
try:
|
154 |
+
self.loaded_shards[shard] = pd.read_parquet(
|
155 |
+
shard_path,
|
156 |
+
columns=["title", "summary", "source"]
|
157 |
+
)
|
158 |
+
logger.info(f"Successfully loaded shard {shard} with {len(self.loaded_shards[shard])} rows")
|
159 |
+
except Exception as e:
|
160 |
+
logger.error(f"Failed to read parquet file {shard}: {str(e)}")
|
161 |
+
|
162 |
+
# Try to read file schema for debugging
|
163 |
+
try:
|
164 |
+
schema = pd.read_parquet(shard_path, engine='pyarrow').dtypes
|
165 |
+
logger.info(f"Parquet schema: {schema}")
|
166 |
+
except:
|
167 |
+
pass
|
168 |
+
continue
|
169 |
|
170 |
if local_indices:
|
171 |
+
# Validate indices are within dataframe bounds
|
172 |
+
df_len = len(self.loaded_shards[shard])
|
173 |
+
valid_local_indices = [idx for idx in local_indices if 0 <= idx < df_len]
|
174 |
+
|
175 |
+
if len(valid_local_indices) != len(local_indices):
|
176 |
+
logger.warning(f"Filtered {len(local_indices) - len(valid_local_indices)} out-of-bounds indices")
|
177 |
+
|
178 |
+
if valid_local_indices:
|
179 |
+
logger.debug(f"Retrieving rows at indices: {valid_local_indices}")
|
180 |
+
chunk = self.loaded_shards[shard].iloc[valid_local_indices]
|
181 |
+
results.append(chunk)
|
182 |
+
logger.info(f"Retrieved {len(chunk)} records from shard {shard}")
|
183 |
+
|
184 |
+
logger.info(f"Shard processing completed in {time.time() - start_time:.2f} seconds")
|
185 |
+
|
186 |
except Exception as e:
|
187 |
+
logger.error(f"Error processing shard {shard}: {str(e)}", exc_info=True)
|
188 |
continue
|
189 |
|
190 |
+
# Combine results
|
191 |
+
if results:
|
192 |
+
combined = pd.concat(results).reset_index(drop=True)
|
193 |
+
logger.info(f"Combined metadata: {len(combined)} records from {len(results)} shards")
|
194 |
+
return combined
|
195 |
+
else:
|
196 |
+
logger.warning("No metadata records retrieved")
|
197 |
+
return pd.DataFrame(columns=["title", "summary", "source", "similarity"])
|
198 |
|
199 |
class SemanticSearch:
|
200 |
def __init__(self):
|
201 |
self.shard_dir = Path("compressed_shards")
|
202 |
self.model = None
|
203 |
self.index_shards = []
|
204 |
+
self.metadata_mgr = MetadataManager()
|
205 |
self.shard_sizes = []
|
206 |
|
207 |
+
# Configure search logger
|
208 |
+
self.logger = logging.getLogger("SemanticSearch")
|
209 |
+
self.logger.info("Initializing SemanticSearch")
|
210 |
+
|
211 |
@st.cache_resource
|
212 |
def load_model(_self):
|
213 |
return SentenceTransformer('all-MiniLM-L6-v2')
|
214 |
|
215 |
def initialize_system(self):
|
216 |
+
self.logger.info("Loading sentence transformer model")
|
217 |
+
start_time = time.time()
|
218 |
self.model = self.load_model()
|
219 |
+
self.logger.info(f"Model loaded in {time.time() - start_time:.2f} seconds")
|
220 |
+
|
221 |
+
self.logger.info("Loading FAISS indices")
|
222 |
self._load_faiss_shards()
|
223 |
|
224 |
def _load_faiss_shards(self):
|
225 |
"""Load all FAISS index shards"""
|
226 |
+
self.logger.info(f"Searching for index files in {self.shard_dir}")
|
227 |
+
|
228 |
+
if not self.shard_dir.exists():
|
229 |
+
self.logger.error(f"Shard directory not found: {self.shard_dir}")
|
230 |
+
return
|
231 |
+
|
232 |
+
index_files = list(self.shard_dir.glob("*.index"))
|
233 |
+
self.logger.info(f"Found {len(index_files)} index files")
|
234 |
+
|
235 |
self.shard_sizes = []
|
236 |
+
self.index_shards = []
|
237 |
+
|
238 |
+
for shard_path in sorted(index_files):
|
239 |
+
try:
|
240 |
+
self.logger.info(f"Loading index: {shard_path}")
|
241 |
+
start_time = time.time()
|
242 |
+
|
243 |
+
# Log file size
|
244 |
+
file_size_mb = os.path.getsize(shard_path) / (1024 * 1024)
|
245 |
+
self.logger.info(f"Index file size: {file_size_mb:.2f} MB")
|
246 |
+
|
247 |
+
index = faiss.read_index(str(shard_path))
|
248 |
+
self.index_shards.append(index)
|
249 |
+
self.shard_sizes.append(index.ntotal)
|
250 |
+
|
251 |
+
self.logger.info(f"Loaded index with {index.ntotal} vectors in {time.time() - start_time:.2f} seconds")
|
252 |
+
except Exception as e:
|
253 |
+
self.logger.error(f"Failed to load index {shard_path}: {str(e)}")
|
254 |
+
|
255 |
+
total_vectors = sum(self.shard_sizes)
|
256 |
+
self.logger.info(f"Total loaded vectors: {total_vectors} across {len(self.index_shards)} shards")
|
257 |
|
258 |
def _global_index(self, shard_idx, local_idx):
|
259 |
"""Convert local index to global index"""
|
|
|
261 |
|
262 |
def search(self, query, top_k=5):
|
263 |
"""Search with validation"""
|
264 |
+
self.logger.info(f"Searching for query: '{query}' (top_k={top_k})")
|
265 |
+
start_time = time.time()
|
266 |
+
|
267 |
+
if not query:
|
268 |
+
self.logger.warning("Empty query provided")
|
269 |
+
return pd.DataFrame()
|
270 |
+
|
271 |
+
if not self.index_shards:
|
272 |
+
self.logger.error("No index shards loaded")
|
273 |
return pd.DataFrame()
|
274 |
|
275 |
try:
|
276 |
+
self.logger.info("Encoding query")
|
277 |
query_embedding = self.model.encode([query], convert_to_numpy=True)
|
278 |
+
self.logger.debug(f"Query encoded to shape {query_embedding.shape}")
|
279 |
except Exception as e:
|
280 |
+
self.logger.error(f"Query encoding failed: {str(e)}")
|
281 |
return pd.DataFrame()
|
282 |
|
283 |
all_distances = []
|
284 |
all_global_indices = []
|
285 |
|
286 |
# Search with index validation
|
287 |
+
self.logger.info(f"Searching across {len(self.index_shards)} shards")
|
288 |
for shard_idx, index in enumerate(self.index_shards):
|
289 |
if index.ntotal == 0:
|
290 |
+
self.logger.warning(f"Skipping empty shard {shard_idx}")
|
291 |
continue
|
292 |
|
293 |
try:
|
294 |
+
shard_start = time.time()
|
295 |
distances, indices = index.search(query_embedding, top_k)
|
296 |
+
|
297 |
+
valid_mask = (indices[0] >= 0) & (indices[0] < index.ntotal)
|
298 |
+
valid_indices = indices[0][valid_mask].tolist()
|
299 |
+
valid_distances = distances[0][valid_mask].tolist()
|
300 |
+
|
301 |
+
if len(valid_indices) != top_k:
|
302 |
+
self.logger.debug(f"Shard {shard_idx}: Found {len(valid_indices)} valid results out of {top_k}")
|
303 |
+
|
304 |
global_indices = [self._global_index(shard_idx, idx) for idx in valid_indices]
|
305 |
|
306 |
+
all_distances.extend(valid_distances)
|
307 |
all_global_indices.extend(global_indices)
|
308 |
+
|
309 |
+
self.logger.debug(f"Shard {shard_idx} search completed in {time.time() - shard_start:.3f}s")
|
310 |
except Exception as e:
|
311 |
+
self.logger.error(f"Search failed in shard {shard_idx}: {str(e)}")
|
312 |
continue
|
313 |
|
314 |
+
self.logger.info(f"Search found {len(all_global_indices)} results across all shards")
|
315 |
+
|
316 |
+
# Process results
|
317 |
+
results = self._process_results(
|
318 |
+
np.array(all_distances),
|
319 |
+
np.array(all_global_indices),
|
320 |
top_k
|
321 |
)
|
322 |
+
|
323 |
+
self.logger.info(f"Search completed in {time.time() - start_time:.2f} seconds with {len(results)} final results")
|
324 |
+
return results
|
325 |
|
326 |
def _process_results(self, distances, global_indices, top_k):
|
327 |
"""Process raw search results into formatted DataFrame"""
|
328 |
+
process_start = time.time()
|
329 |
+
|
330 |
# Proper numpy array emptiness checks
|
331 |
if global_indices.size == 0 or distances.size == 0:
|
332 |
+
self.logger.warning("No search results to process")
|
333 |
return pd.DataFrame(columns=["title", "summary", "source", "similarity"])
|
334 |
|
335 |
try:
|
|
|
|
|
|
|
336 |
# Get metadata for matched indices
|
337 |
+
self.logger.info(f"Retrieving metadata for {len(global_indices)} indices")
|
338 |
+
metadata_start = time.time()
|
339 |
+
results = self.metadata_mgr.get_metadata(global_indices)
|
340 |
+
self.logger.info(f"Metadata retrieved in {time.time() - metadata_start:.2f}s, got {len(results)} records")
|
341 |
|
342 |
+
# Empty results check
|
343 |
+
if len(results) == 0:
|
344 |
+
self.logger.warning("No metadata found for indices")
|
345 |
+
return pd.DataFrame(columns=["title", "summary", "source", "similarity"])
|
346 |
+
|
347 |
# Ensure distances match results length
|
348 |
if len(results) != len(distances):
|
349 |
+
self.logger.warning(f"Mismatch between distances ({len(distances)}) and results ({len(results)})")
|
350 |
+
|
351 |
+
if len(results) < len(distances):
|
352 |
+
self.logger.info("Truncating distances array to match results length")
|
353 |
+
distances = distances[:len(results)]
|
354 |
+
else:
|
355 |
+
# Should not happen but handle it anyway
|
356 |
+
self.logger.error("More results than distances - this shouldn't happen")
|
357 |
+
distances = np.pad(distances, (0, len(results) - len(distances)), 'constant', constant_values=1.0)
|
358 |
|
359 |
# Calculate similarity scores
|
360 |
+
self.logger.debug("Calculating similarity scores")
|
361 |
results['similarity'] = 1 - (distances / 2)
|
362 |
|
363 |
+
# Log similarity statistics
|
364 |
+
if not results.empty:
|
365 |
+
self.logger.debug(f"Similarity stats: min={results['similarity'].min():.3f}, " +
|
366 |
+
f"max={results['similarity'].max():.3f}, " +
|
367 |
+
f"mean={results['similarity'].mean():.3f}")
|
368 |
+
|
369 |
# Deduplicate and sort results
|
370 |
+
pre_dedup = len(results)
|
371 |
results = results.drop_duplicates(subset=["title", "source"]).sort_values("similarity", ascending=False).head(top_k)
|
372 |
+
post_dedup = len(results)
|
373 |
|
374 |
+
if pre_dedup > post_dedup:
|
375 |
+
self.logger.info(f"Removed {pre_dedup - post_dedup} duplicate results")
|
376 |
+
|
377 |
+
self.logger.info(f"Results processed in {time.time() - process_start:.2f}s, returning {len(results)} items")
|
378 |
return results.reset_index(drop=True)
|
379 |
|
380 |
except Exception as e:
|
381 |
+
self.logger.error(f"Result processing failed: {str(e)}", exc_info=True)
|
382 |
+
return pd.DataFrame(columns=["title", "summary", "source", "similarity"])
|