import numpy as np import pandas as pd import faiss from pathlib import Path from sentence_transformers import SentenceTransformer, util import streamlit as st class SemanticSearch: def __init__(self, shard_dir="compressed_shards"): self.shard_dir = Path(shard_dir) self.shard_dir.mkdir(exist_ok=True, parents=True) self.model = None self.index_shards = [] @st.cache_resource def load_model(_self): return SentenceTransformer('all-MiniLM-L6-v2') def initialize_system(self): self.model = self.load_model() self._load_index_shards() def _load_index_shards(self): """Load FAISS shards directly from local directory""" for shard_path in sorted(self.shard_dir.glob("*.index")): self.index_shards.append(faiss.read_index(str(shard_path))) def search(self, query, top_k=5): """Search across all shards""" query_embedding = self.model.encode([query], convert_to_numpy=True) all_scores = [] all_indices = [] for shard_idx, index in enumerate(self.index_shards): distances, indices = index.search(query_embedding, top_k) # Convert local indices to global shard offsets global_indices = [ self._calculate_global_index(shard_idx, idx) for idx in indices[0] ] all_scores.extend(distances[0]) all_indices.extend(global_indices) return self._process_results(np.array(all_scores), np.array(all_indices), top_k) def _calculate_global_index(self, shard_idx, local_idx): """Convert shard-local index to global index""" # Implement your specific shard indexing logic here # Example: return f"{shard_idx}-{local_idx}" return local_idx # Simple version if using unique IDs def _process_results(self, distances, indices, top_k): """Format search results""" results = pd.DataFrame({ 'global_index': indices, 'similarity': 1 - (distances / 2) # L2 to cosine approximation }) return results.sort_values('similarity', ascending=False).head(top_k) def search_with_threshold(self, query, top_k=5, similarity_threshold=0.6): """Threshold-filtered search""" results = self.search(query, top_k*2) filtered = results[results['similarity'] > similarity_threshold].head(top_k) return filtered.reset_index(drop=True)