Spaces:
Sleeping
Sleeping
Upload 5 files
Browse files- agent.py +97 -118
- app.py +8 -21
- requirements.txt +2 -4
- tools.py +158 -130
agent.py
CHANGED
@@ -1,150 +1,129 @@
|
|
1 |
-
"""
|
2 |
-
GAIA benchmark agent using the OpenAI Agents SDK.
|
3 |
-
"""
|
4 |
|
5 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
6 |
|
7 |
-
import asyncio
|
8 |
import os
|
9 |
-
from typing import Any, Sequence
|
10 |
-
from datetime import datetime
|
11 |
-
from agents import RunHooks # for lifecycle hooks
|
12 |
|
13 |
from dotenv import load_dotenv
|
14 |
-
from agents import Agent, Runner, FunctionTool, Tool
|
15 |
|
16 |
-
#
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
17 |
from tools import (
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
duckduckgo_search,
|
24 |
)
|
25 |
|
|
|
26 |
# ---------------------------------------------------------------------------
|
27 |
-
# Load the added system prompt
|
28 |
# ---------------------------------------------------------------------------
|
29 |
ADDED_PROMPT_PATH = os.path.join(os.path.dirname(__file__), "added_prompt.txt")
|
30 |
with open(ADDED_PROMPT_PATH, "r", encoding="utf-8") as f:
|
31 |
ADDED_PROMPT = f.read().strip()
|
32 |
|
33 |
-
load_dotenv()
|
34 |
|
|
|
|
|
|
|
35 |
|
36 |
-
|
37 |
-
"""Return a model identifier appropriate for the Agents SDK based on environment settings."""
|
38 |
-
provider = os.getenv("MODEL_PROVIDER", "hf").lower()
|
39 |
|
40 |
-
|
41 |
-
|
42 |
-
|
|
|
43 |
|
44 |
if provider == "hf":
|
45 |
-
|
46 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
47 |
|
48 |
raise ValueError(
|
49 |
-
f"Unsupported MODEL_PROVIDER: {provider!r}.
|
|
|
50 |
)
|
51 |
|
|
|
|
|
|
|
52 |
|
53 |
-
DEFAULT_TOOLS
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
]
|
61 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
62 |
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
"You are a helpful assistant tasked with answering questions using the available tools.\n\n"
|
67 |
-
+ ADDED_PROMPT
|
68 |
-
)
|
69 |
|
70 |
-
|
|
|
|
|
71 |
if extra_tools:
|
72 |
-
|
73 |
-
|
74 |
-
return Agent(
|
75 |
-
name="GAIA Agent",
|
76 |
-
instructions=instructions,
|
77 |
-
tools=tools,
|
78 |
-
model=_select_model(),
|
79 |
-
)
|
80 |
-
|
81 |
-
|
82 |
-
class LoggingHooks(RunHooks):
|
83 |
-
"""RunHooks to log question start, model used, and each tool‐call step."""
|
84 |
-
def __init__(self):
|
85 |
-
self.step_counter = 0
|
86 |
-
|
87 |
-
async def on_agent_start(self, context, agent):
|
88 |
-
qnum = context.context.get("question_number")
|
89 |
-
qtext = context.context.get("question_text")
|
90 |
-
model = agent.model
|
91 |
-
ts = datetime.now().isoformat()
|
92 |
-
print(f"[{ts}] [Question {qnum}] Starting agent (model={model}) for question: '{qtext}'")
|
93 |
-
|
94 |
-
async def on_tool_start(self, context, agent, tool):
|
95 |
-
self.step_counter += 1
|
96 |
-
qnum = context.context.get("question_number")
|
97 |
-
ts = datetime.now().isoformat()
|
98 |
-
print(f"[{ts}] [Question {qnum}] Step {self.step_counter}: Invoking tool '{tool.name}'")
|
99 |
-
|
100 |
-
async def on_tool_end(self, context, agent, tool, result):
|
101 |
-
qnum = context.context.get("question_number")
|
102 |
-
ts = datetime.now().isoformat()
|
103 |
-
print(f"[{ts}] [Question {qnum}] Step {self.step_counter}: Tool '{tool.name}' completed")
|
104 |
-
|
105 |
-
|
106 |
-
class GAIAAgent:
|
107 |
-
"""Thin synchronous wrapper around an asynchronous Agents SDK agent."""
|
108 |
-
|
109 |
-
def __init__(self, *, extra_tools: Sequence[FunctionTool] | None = None):
|
110 |
-
self._agent = _build_agent(extra_tools=extra_tools)
|
111 |
-
|
112 |
-
async def _arun(self, question: str, context_data=None, hooks=None) -> str:
|
113 |
-
# Pass context and hooks to Runner.run if provided
|
114 |
-
if context_data is not None and hooks is not None:
|
115 |
-
result = await Runner.run(
|
116 |
-
self._agent,
|
117 |
-
question,
|
118 |
-
context=context_data,
|
119 |
-
hooks=hooks
|
120 |
-
)
|
121 |
-
else:
|
122 |
-
result = await Runner.run(self._agent, question)
|
123 |
-
return str(result.final_output).strip()
|
124 |
-
|
125 |
-
def __call__(self, question: str, question_number: int | None = None, **_kwargs) -> str:
|
126 |
-
# Prepare logging context if a question_number is given
|
127 |
-
context_data = None
|
128 |
-
hooks = None
|
129 |
-
if question_number is not None:
|
130 |
-
context_data = {
|
131 |
-
"question_number": question_number,
|
132 |
-
"question_text": question
|
133 |
-
}
|
134 |
-
hooks = LoggingHooks()
|
135 |
-
|
136 |
-
try:
|
137 |
-
loop = asyncio.get_running_loop()
|
138 |
-
except RuntimeError:
|
139 |
-
# No running loop: use asyncio.run
|
140 |
-
return asyncio.run(self._arun(question, context_data, hooks))
|
141 |
-
else:
|
142 |
-
return loop.run_until_complete(self._arun(question, context_data, hooks))
|
143 |
-
|
144 |
-
|
145 |
-
def gaia_agent(*, extra_tools: Sequence[FunctionTool] | None = None) -> GAIAAgent:
|
146 |
-
"""Factory returning a ready‑to‑use GAIAAgent instance."""
|
147 |
-
return GAIAAgent(extra_tools=extra_tools)
|
148 |
-
|
149 |
|
150 |
__all__ = ["GAIAAgent", "gaia_agent"]
|
|
|
1 |
+
"""GAIA benchmark agent using *smolagents*.
|
|
|
|
|
2 |
|
3 |
+
This module exposes:
|
4 |
+
|
5 |
+
* ``gaia_agent()`` – factory returning a ready‑to‑use agent instance.
|
6 |
+
* ``GAIAAgent`` – subclass of ``smolagents.CodeAgent``.
|
7 |
+
|
8 |
+
The LLM backend is chosen at runtime via the ``MODEL_PROVIDER``
|
9 |
+
environment variable (``hf`` or ``openai``) exactly like *example.py*.
|
10 |
+
"""
|
11 |
|
|
|
12 |
import os
|
13 |
+
from typing import Any, Sequence
|
|
|
|
|
14 |
|
15 |
from dotenv import load_dotenv
|
|
|
16 |
|
17 |
+
# SmolAgents Tools
|
18 |
+
from smolagents import (
|
19 |
+
CodeAgent,
|
20 |
+
DuckDuckGoSearchTool,
|
21 |
+
Tool
|
22 |
+
)
|
23 |
+
|
24 |
+
# Custom Tools from tools.py
|
25 |
from tools import (
|
26 |
+
PythonRunTool,
|
27 |
+
ExcelLoaderTool,
|
28 |
+
YouTubeTranscriptTool,
|
29 |
+
AudioTranscriptionTool,
|
30 |
+
SimpleOCRTool,
|
|
|
31 |
)
|
32 |
|
33 |
+
|
34 |
# ---------------------------------------------------------------------------
|
35 |
+
# Load the added system prompt from system_prompt.txt (located in the same directory)
|
36 |
# ---------------------------------------------------------------------------
|
37 |
ADDED_PROMPT_PATH = os.path.join(os.path.dirname(__file__), "added_prompt.txt")
|
38 |
with open(ADDED_PROMPT_PATH, "r", encoding="utf-8") as f:
|
39 |
ADDED_PROMPT = f.read().strip()
|
40 |
|
|
|
41 |
|
42 |
+
# ---------------------------------------------------------------------------
|
43 |
+
# Model selection helper
|
44 |
+
# ---------------------------------------------------------------------------
|
45 |
|
46 |
+
load_dotenv() # Make sure we read credentials from .env when running locally
|
|
|
|
|
47 |
|
48 |
+
def _select_model():
|
49 |
+
"""Return a smolagents *model* as configured by the ``MODEL_PROVIDER`` env."""
|
50 |
+
|
51 |
+
provider = os.getenv("MODEL_PROVIDER", "hf").lower()
|
52 |
|
53 |
if provider == "hf":
|
54 |
+
from smolagents import InferenceClientModel
|
55 |
+
hf_model_id = os.getenv("HF_MODEL", "HuggingFaceH4/zephyr-7b-beta")
|
56 |
+
hf_token = os.getenv("HF_API_KEY")
|
57 |
+
return InferenceClientModel(
|
58 |
+
model_id=hf_model_id,
|
59 |
+
token=hf_token
|
60 |
+
)
|
61 |
+
|
62 |
+
if provider == "openai":
|
63 |
+
from smolagents import OpenAIServerModel
|
64 |
+
openai_model_id = os.getenv("OPENAI_MODEL", "gpt-3.5-turbo")
|
65 |
+
openai_token = os.getenv("OPENAI_API_KEY")
|
66 |
+
return OpenAIServerModel(
|
67 |
+
model_id=openai_model_id,
|
68 |
+
api_key=openai_token
|
69 |
+
)
|
70 |
|
71 |
raise ValueError(
|
72 |
+
f"Unsupported MODEL_PROVIDER: {provider!r}. "
|
73 |
+
"Use 'hf' (default) or 'openai'."
|
74 |
)
|
75 |
|
76 |
+
# ---------------------------------------------------------------------------
|
77 |
+
# Core Agent implementation
|
78 |
+
# ---------------------------------------------------------------------------
|
79 |
|
80 |
+
DEFAULT_TOOLS = [
|
81 |
+
DuckDuckGoSearchTool(),
|
82 |
+
PythonRunTool(),
|
83 |
+
ExcelLoaderTool(),
|
84 |
+
YouTubeTranscriptTool(),
|
85 |
+
AudioTranscriptionTool(),
|
86 |
+
SimpleOCRTool(),
|
87 |
]
|
88 |
|
89 |
+
class GAIAAgent(CodeAgent):
|
90 |
+
def __init__(
|
91 |
+
self,
|
92 |
+
tools=None
|
93 |
+
):
|
94 |
+
super().__init__(
|
95 |
+
tools=tools or DEFAULT_TOOLS,
|
96 |
+
model=_select_model()
|
97 |
+
)
|
98 |
+
# Append the additional prompt to the existing system prompt
|
99 |
+
self.prompt_templates["system_prompt"] += f"\n\n{ADDED_PROMPT}"
|
100 |
+
|
101 |
+
# Convenience so the object itself can be *called* directly
|
102 |
+
def __call__(self, question: str, **kwargs: Any) -> str:
|
103 |
+
steps = self.run(question, **kwargs)
|
104 |
+
# If steps is a primitive, just return it
|
105 |
+
if isinstance(steps, (int, float, str)):
|
106 |
+
return str(steps).strip()
|
107 |
+
last_step = None
|
108 |
+
for step in steps:
|
109 |
+
last_step = step
|
110 |
+
# Defensive: handle int/float/str directly
|
111 |
+
if isinstance(last_step, (int, float, str)):
|
112 |
+
return str(last_step).strip()
|
113 |
+
answer = getattr(last_step, "answer", None)
|
114 |
+
if answer is not None:
|
115 |
+
return str(answer).strip()
|
116 |
+
return str(last_step).strip()
|
117 |
|
118 |
+
# ---------------------------------------------------------------------------
|
119 |
+
# Factory helpers expected by app.py
|
120 |
+
# ---------------------------------------------------------------------------
|
|
|
|
|
|
|
121 |
|
122 |
+
def gaia_agent(*, extra_tools: Sequence[Tool] | None = None) -> GAIAAgent:
|
123 |
+
# Compose the toolset: always include all default tools, plus any extras
|
124 |
+
toolset = list(DEFAULT_TOOLS)
|
125 |
if extra_tools:
|
126 |
+
toolset.extend(extra_tools)
|
127 |
+
return GAIAAgent(tools=toolset)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
128 |
|
129 |
__all__ = ["GAIAAgent", "gaia_agent"]
|
app.py
CHANGED
@@ -32,10 +32,10 @@ def run_and_submit_all( profile: gr.OAuthProfile | None):
|
|
32 |
questions_url = f"{api_url}/questions"
|
33 |
submit_url = f"{api_url}/submit"
|
34 |
|
35 |
-
# 1. Instantiate Agent (now using
|
36 |
try:
|
37 |
agent = gaia_agent()
|
38 |
-
print("
|
39 |
except Exception as e:
|
40 |
print(f"Error instantiating agent: {e}")
|
41 |
return f"Error initializing agent: {e}", None
|
@@ -70,16 +70,14 @@ def run_and_submit_all( profile: gr.OAuthProfile | None):
|
|
70 |
results_log = []
|
71 |
answers_payload = []
|
72 |
print(f"Running agent on {len(questions_data)} questions...")
|
73 |
-
for
|
74 |
task_id = item.get("task_id")
|
75 |
question_text = item.get("question")
|
76 |
if not task_id or question_text is None:
|
77 |
print(f"Skipping item with missing task_id or question: {item}")
|
78 |
continue
|
79 |
try:
|
80 |
-
|
81 |
-
submitted_answer = agent(question_text, question_number=idx)
|
82 |
-
|
83 |
# --- DEBUG LOGGING ---
|
84 |
if DEBUG:
|
85 |
print(f"[DEBUG] Task {task_id}: Answer type: {type(submitted_answer)}, Value: {repr(submitted_answer)}")
|
@@ -88,22 +86,11 @@ def run_and_submit_all( profile: gr.OAuthProfile | None):
|
|
88 |
|
89 |
# Force string type here just in case (defensive)
|
90 |
submitted_answer = str(submitted_answer).strip()
|
91 |
-
answers_payload.append({
|
92 |
-
|
93 |
-
"submitted_answer": submitted_answer
|
94 |
-
})
|
95 |
-
results_log.append({
|
96 |
-
"Task ID": task_id,
|
97 |
-
"Question": question_text,
|
98 |
-
"Submitted Answer": submitted_answer
|
99 |
-
})
|
100 |
except Exception as e:
|
101 |
-
|
102 |
-
|
103 |
-
"Task ID": task_id,
|
104 |
-
"Question": question_text,
|
105 |
-
"Submitted Answer": f"AGENT ERROR: {e}"
|
106 |
-
})
|
107 |
|
108 |
if not answers_payload:
|
109 |
print("Agent did not produce any answers to submit.")
|
|
|
32 |
questions_url = f"{api_url}/questions"
|
33 |
submit_url = f"{api_url}/submit"
|
34 |
|
35 |
+
# 1. Instantiate Agent (now using smolagents)
|
36 |
try:
|
37 |
agent = gaia_agent()
|
38 |
+
print("SmolAgent instantiated successfully.")
|
39 |
except Exception as e:
|
40 |
print(f"Error instantiating agent: {e}")
|
41 |
return f"Error initializing agent: {e}", None
|
|
|
70 |
results_log = []
|
71 |
answers_payload = []
|
72 |
print(f"Running agent on {len(questions_data)} questions...")
|
73 |
+
for item in questions_data:
|
74 |
task_id = item.get("task_id")
|
75 |
question_text = item.get("question")
|
76 |
if not task_id or question_text is None:
|
77 |
print(f"Skipping item with missing task_id or question: {item}")
|
78 |
continue
|
79 |
try:
|
80 |
+
submitted_answer = agent(question_text)
|
|
|
|
|
81 |
# --- DEBUG LOGGING ---
|
82 |
if DEBUG:
|
83 |
print(f"[DEBUG] Task {task_id}: Answer type: {type(submitted_answer)}, Value: {repr(submitted_answer)}")
|
|
|
86 |
|
87 |
# Force string type here just in case (defensive)
|
88 |
submitted_answer = str(submitted_answer).strip()
|
89 |
+
answers_payload.append({"task_id": task_id, "submitted_answer": submitted_answer})
|
90 |
+
results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": submitted_answer})
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
91 |
except Exception as e:
|
92 |
+
print(f"Error running agent on task {task_id}: {e}")
|
93 |
+
results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": f"AGENT ERROR: {e}"})
|
|
|
|
|
|
|
|
|
94 |
|
95 |
if not answers_payload:
|
96 |
print("Agent did not produce any answers to submit.")
|
requirements.txt
CHANGED
@@ -1,10 +1,8 @@
|
|
1 |
gradio
|
2 |
requests
|
3 |
pandas
|
4 |
-
openai
|
5 |
-
openai>=1.3
|
6 |
duckduckgo-search
|
7 |
youtube-transcript-api
|
8 |
pytesseract
|
9 |
-
pillow
|
10 |
-
python-dotenv
|
|
|
1 |
gradio
|
2 |
requests
|
3 |
pandas
|
4 |
+
smolagents[openai]
|
|
|
5 |
duckduckgo-search
|
6 |
youtube-transcript-api
|
7 |
pytesseract
|
8 |
+
pillow
|
|
tools.py
CHANGED
@@ -1,142 +1,170 @@
|
|
1 |
-
|
2 |
-
Custom function tools for OpenAI Agents SDK GAIA agent.
|
3 |
-
"""
|
4 |
-
|
5 |
from __future__ import annotations
|
6 |
-
|
7 |
import contextlib
|
8 |
import io
|
9 |
import os
|
10 |
-
from typing import
|
11 |
|
12 |
-
from
|
13 |
|
14 |
-
# 1.
|
15 |
-
|
16 |
-
|
17 |
-
"""
|
18 |
-
|
19 |
-
|
20 |
-
Args:
|
21 |
-
code: Python code to execute.
|
22 |
"""
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
45 |
"""
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
58 |
else:
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
lang: Preferred transcript language code (default "en").
|
74 |
-
"""
|
75 |
-
from urllib.parse import urlparse, parse_qs
|
76 |
-
from youtube_transcript_api._api import YouTubeTranscriptApi
|
77 |
-
|
78 |
-
vid = parse_qs(urlparse(url).query).get("v", [None])[0] or url.split("/")[-1]
|
79 |
-
data = YouTubeTranscriptApi.get_transcript(
|
80 |
-
vid, languages=[lang, "en", "en-US", "en-GB"]
|
81 |
-
)
|
82 |
-
return " ".join(chunk["text"] for chunk in data).strip()
|
83 |
-
|
84 |
-
|
85 |
-
# 4. --------------------------------------------------------------------
|
86 |
-
@function_tool
|
87 |
-
def transcribe_audio(path: str, model: str = "whisper-1") -> str:
|
88 |
-
"""Transcribe an audio file using OpenAI Whisper.
|
89 |
-
|
90 |
-
Args:
|
91 |
-
path: Path to audio file (wav / mp3 / m4a / etc.).
|
92 |
-
model: Whisper model name (default "whisper-1").
|
93 |
"""
|
94 |
-
|
95 |
-
|
96 |
-
|
97 |
-
|
98 |
-
|
99 |
-
|
100 |
-
|
101 |
-
|
102 |
-
|
103 |
-
|
104 |
-
|
105 |
-
|
106 |
-
|
107 |
-
|
108 |
-
""
|
109 |
-
|
110 |
-
|
111 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
112 |
"""
|
113 |
-
|
114 |
-
|
115 |
-
|
116 |
-
|
117 |
-
|
118 |
-
|
119 |
-
|
120 |
-
|
121 |
-
|
122 |
-
|
123 |
-
|
124 |
-
|
125 |
-
|
126 |
-
|
127 |
-
|
128 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
129 |
"""
|
130 |
-
|
131 |
-
|
132 |
-
|
133 |
-
|
134 |
-
|
135 |
-
|
136 |
-
|
137 |
-
|
138 |
-
|
139 |
-
|
140 |
-
|
141 |
-
|
142 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Custom tools for smolagents GAIA agent
|
|
|
|
|
|
|
2 |
from __future__ import annotations
|
|
|
3 |
import contextlib
|
4 |
import io
|
5 |
import os
|
6 |
+
from typing import Any, Dict, List
|
7 |
|
8 |
+
from smolagents import Tool
|
9 |
|
10 |
+
# ---- 1. PythonRunTool ------------------------------------------------------
|
11 |
+
class PythonRunTool(Tool):
|
12 |
+
name = "python_run"
|
13 |
+
description = """
|
14 |
+
Execute trusted Python code and return printed output + repr() of the last expression (or _result variable).
|
|
|
|
|
|
|
15 |
"""
|
16 |
+
inputs = {
|
17 |
+
"code": {
|
18 |
+
"type": "string",
|
19 |
+
"description": "Python code to execute",
|
20 |
+
"required": True
|
21 |
+
}
|
22 |
+
}
|
23 |
+
output_type = "string"
|
24 |
+
|
25 |
+
def forward(self, code: str) -> str:
|
26 |
+
buf, ns = io.StringIO(), {}
|
27 |
+
last = None
|
28 |
+
try:
|
29 |
+
with contextlib.redirect_stdout(buf):
|
30 |
+
exec(compile(code, "<agent-python>", "exec"), {}, ns)
|
31 |
+
last = ns.get("_result", None)
|
32 |
+
except Exception as e:
|
33 |
+
raise RuntimeError(f"PythonRunTool error: {e}") from e
|
34 |
+
out = buf.getvalue()
|
35 |
+
# Always return a string
|
36 |
+
result = (out + (repr(last) if last is not None else "")).strip()
|
37 |
+
return str(result)
|
38 |
+
|
39 |
+
# ---- 2. ExcelLoaderTool ----------------------------------------------------
|
40 |
+
class ExcelLoaderTool(Tool):
|
41 |
+
name = "load_spreadsheet"
|
42 |
+
description = """
|
43 |
+
Read .xlsx/.xls/.csv from disk and return rows as a list of dictionaries with string keys.
|
44 |
"""
|
45 |
+
inputs = {
|
46 |
+
"path": {
|
47 |
+
"type": "string",
|
48 |
+
"description": "Path to .csv/.xls/.xlsx file",
|
49 |
+
"required": True
|
50 |
+
},
|
51 |
+
"sheet": {
|
52 |
+
"type": "string",
|
53 |
+
"description": "Sheet name or index (optional, required for Excel files only)",
|
54 |
+
"required": False,
|
55 |
+
"default": "",
|
56 |
+
"nullable": True
|
57 |
+
}
|
58 |
+
}
|
59 |
+
output_type = "array"
|
60 |
+
|
61 |
+
def forward(self, path: str, sheet: str | int | None = None) -> str:
|
62 |
+
import pandas as pd
|
63 |
+
if not os.path.isfile(path):
|
64 |
+
raise FileNotFoundError(path)
|
65 |
+
ext = os.path.splitext(path)[1].lower()
|
66 |
+
if sheet == "":
|
67 |
+
sheet = None
|
68 |
+
if ext == ".csv":
|
69 |
+
df = pd.read_csv(path)
|
70 |
else:
|
71 |
+
df = pd.read_excel(path, sheet_name=sheet)
|
72 |
+
if isinstance(df, dict):
|
73 |
+
# If user did not specify a sheet, use the first one found
|
74 |
+
first_sheet = next(iter(df))
|
75 |
+
df = df[first_sheet]
|
76 |
+
records = [{str(k): v for k, v in row.items()} for row in df.to_dict(orient="records")]
|
77 |
+
# Always return a string
|
78 |
+
return str(records)
|
79 |
+
|
80 |
+
# ---- 3. YouTubeTranscriptTool ---------------------------------------------
|
81 |
+
class YouTubeTranscriptTool(Tool):
|
82 |
+
name = "youtube_transcript"
|
83 |
+
description = """
|
84 |
+
Return the subtitles of a YouTube URL using youtube-transcript-api.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
85 |
"""
|
86 |
+
inputs = {
|
87 |
+
"url": {
|
88 |
+
"type": "string",
|
89 |
+
"description": "YouTube URL",
|
90 |
+
"required": True
|
91 |
+
},
|
92 |
+
"lang": {
|
93 |
+
"type": "string",
|
94 |
+
"description": "Transcript language (default: en)",
|
95 |
+
"required": False,
|
96 |
+
"default": "en",
|
97 |
+
"nullable": True
|
98 |
+
}
|
99 |
+
}
|
100 |
+
output_type = "string"
|
101 |
+
|
102 |
+
def forward(self, url: str, lang: str = "en") -> str:
|
103 |
+
from urllib.parse import urlparse, parse_qs
|
104 |
+
from youtube_transcript_api._api import YouTubeTranscriptApi
|
105 |
+
vid = parse_qs(urlparse(url).query).get("v", [None])[0] or url.split("/")[-1]
|
106 |
+
data = YouTubeTranscriptApi.get_transcript(vid, languages=[lang, "en", "en-US", "en-GB"])
|
107 |
+
text = " ".join(d["text"] for d in data).strip()
|
108 |
+
return str(text)
|
109 |
+
|
110 |
+
# ---- 4. AudioTranscriptionTool --------------------------------------------
|
111 |
+
class AudioTranscriptionTool(Tool):
|
112 |
+
name = "transcribe_audio"
|
113 |
+
description = """
|
114 |
+
Transcribe an audio file with OpenAI Whisper, returns plain text."
|
115 |
"""
|
116 |
+
inputs = {
|
117 |
+
"path": {
|
118 |
+
"type": "string",
|
119 |
+
"description": "Path to audio file",
|
120 |
+
"required": True
|
121 |
+
},
|
122 |
+
"model": {
|
123 |
+
"type": "string",
|
124 |
+
"description": "Model name for transcription (default: whisper-1)",
|
125 |
+
"required": False,
|
126 |
+
"default": "whisper-1",
|
127 |
+
"nullable": True
|
128 |
+
}
|
129 |
+
}
|
130 |
+
output_type = "string"
|
131 |
+
|
132 |
+
def forward(self, path: str, model: str = "whisper-1") -> str:
|
133 |
+
import openai
|
134 |
+
if not os.path.isfile(path):
|
135 |
+
raise FileNotFoundError(path)
|
136 |
+
client = openai.OpenAI(api_key=os.getenv("OPENAI_API_KEY"))
|
137 |
+
with open(path, "rb") as fp:
|
138 |
+
transcript = client.audio.transcriptions.create(model=model, file=fp)
|
139 |
+
return str(transcript.text.strip())
|
140 |
+
|
141 |
+
# ---- 5. SimpleOCRTool ------------------------------------------------------
|
142 |
+
class SimpleOCRTool(Tool):
|
143 |
+
name = "image_ocr"
|
144 |
+
description = """
|
145 |
+
Return any text spotted in an image via pytesseract OCR.
|
146 |
"""
|
147 |
+
inputs = {
|
148 |
+
"path": {
|
149 |
+
"type": "string",
|
150 |
+
"description": "Path to image file",
|
151 |
+
"required": True
|
152 |
+
}
|
153 |
+
}
|
154 |
+
output_type = "string"
|
155 |
+
|
156 |
+
def forward(self, path: str) -> str:
|
157 |
+
from PIL import Image
|
158 |
+
import pytesseract
|
159 |
+
if not os.path.isfile(path):
|
160 |
+
raise FileNotFoundError(path)
|
161 |
+
return str(pytesseract.image_to_string(Image.open(path)).strip())
|
162 |
+
|
163 |
+
# ---------------------------------------------------------------------------
|
164 |
+
__all__ = [
|
165 |
+
"PythonRunTool",
|
166 |
+
"ExcelLoaderTool",
|
167 |
+
"YouTubeTranscriptTool",
|
168 |
+
"AudioTranscriptionTool",
|
169 |
+
"SimpleOCRTool",
|
170 |
+
]
|