Spaces:
Sleeping
Sleeping
Upload 5 files
Browse files- agent.py +81 -66
- app.py +17 -10
- requirements.txt +1 -1
- tools.py +107 -142
agent.py
CHANGED
@@ -1,36 +1,37 @@
|
|
1 |
-
"""
|
2 |
|
3 |
This module exposes:
|
4 |
|
5 |
* ``gaia_agent()`` – factory returning a ready‑to‑use agent instance.
|
6 |
-
* ``GAIAAgent`` –
|
7 |
|
8 |
The LLM backend is chosen at runtime via the ``MODEL_PROVIDER``
|
9 |
-
environment variable (``hf`` or ``openai``)
|
10 |
"""
|
11 |
|
12 |
import os
|
13 |
-
|
|
|
14 |
|
15 |
from dotenv import load_dotenv
|
16 |
|
17 |
-
#
|
18 |
-
from
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
|
24 |
-
# Custom Tools from tools.py
|
25 |
from tools import (
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
|
|
31 |
)
|
32 |
|
33 |
-
|
34 |
# ---------------------------------------------------------------------------
|
35 |
# Load the added system prompt from system_prompt.txt (located in the same directory)
|
36 |
# ---------------------------------------------------------------------------
|
@@ -38,34 +39,38 @@ ADDED_PROMPT_PATH = os.path.join(os.path.dirname(__file__), "added_prompt.txt")
|
|
38 |
with open(ADDED_PROMPT_PATH, "r", encoding="utf-8") as f:
|
39 |
ADDED_PROMPT = f.read().strip()
|
40 |
|
41 |
-
|
42 |
# ---------------------------------------------------------------------------
|
43 |
# Model selection helper
|
44 |
# ---------------------------------------------------------------------------
|
45 |
|
46 |
-
load_dotenv() # Make sure we read credentials from .env
|
47 |
|
48 |
-
def _select_model():
|
49 |
-
"""Return
|
50 |
|
51 |
provider = os.getenv("MODEL_PROVIDER", "hf").lower()
|
|
|
|
|
|
|
52 |
|
53 |
if provider == "hf":
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
|
|
|
|
|
|
61 |
|
62 |
if provider == "openai":
|
63 |
-
from smolagents import OpenAIServerModel
|
64 |
openai_model_id = os.getenv("OPENAI_MODEL", "gpt-3.5-turbo")
|
65 |
-
openai_token = os.getenv("OPENAI_API_KEY")
|
66 |
-
return
|
67 |
-
|
68 |
-
api_key=openai_token
|
69 |
)
|
70 |
|
71 |
raise ValueError(
|
@@ -77,50 +82,60 @@ def _select_model():
|
|
77 |
# Core Agent implementation
|
78 |
# ---------------------------------------------------------------------------
|
79 |
|
80 |
-
DEFAULT_TOOLS = [
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
]
|
88 |
|
89 |
-
class GAIAAgent
|
90 |
def __init__(
|
91 |
self,
|
92 |
-
tools=None
|
93 |
):
|
94 |
-
|
95 |
-
|
96 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
97 |
)
|
98 |
-
|
99 |
-
|
100 |
-
|
101 |
-
|
102 |
-
|
103 |
-
|
104 |
-
#
|
105 |
-
|
106 |
-
|
107 |
-
|
108 |
-
|
109 |
-
|
110 |
-
|
111 |
-
if
|
112 |
-
|
113 |
-
|
114 |
-
|
115 |
-
|
116 |
-
return
|
117 |
|
118 |
# ---------------------------------------------------------------------------
|
119 |
# Factory helpers expected by app.py
|
120 |
# ---------------------------------------------------------------------------
|
121 |
|
122 |
-
def gaia_agent(*, extra_tools: Sequence[
|
123 |
-
|
|
|
|
|
124 |
toolset = list(DEFAULT_TOOLS)
|
125 |
if extra_tools:
|
126 |
toolset.extend(extra_tools)
|
|
|
1 |
+
"""GAIA benchmark agent using OpenAI Agents SDK.
|
2 |
|
3 |
This module exposes:
|
4 |
|
5 |
* ``gaia_agent()`` – factory returning a ready‑to‑use agent instance.
|
6 |
+
* ``GAIAAgent`` – a class that wraps ``openai_agents.Agent``.
|
7 |
|
8 |
The LLM backend is chosen at runtime via the ``MODEL_PROVIDER``
|
9 |
+
environment variable (``hf`` or ``openai``).
|
10 |
"""
|
11 |
|
12 |
import os
|
13 |
+
import asyncio # Added for potential direct asyncio.run if needed, and for async def
|
14 |
+
from typing import Any, Sequence, Callable, Union # Added Callable and Union
|
15 |
|
16 |
from dotenv import load_dotenv
|
17 |
|
18 |
+
# OpenAI Agents SDK imports
|
19 |
+
from openai_agents import Agent, Runner
|
20 |
+
from openai_agents.models.openai_chat_completions import OpenAIChatCompletionsModel
|
21 |
+
from openai_agents.extensions.models.litellm_model import LitellmModel
|
22 |
+
# FunctionToolType could be imported if it's a public type, for now using Callable
|
23 |
+
# from openai_agents import FunctionToolType # Example if such type exists
|
24 |
|
25 |
+
# Custom Tools from tools.py (now functions)
|
26 |
from tools import (
|
27 |
+
python_run,
|
28 |
+
load_spreadsheet,
|
29 |
+
youtube_transcript,
|
30 |
+
transcribe_audio,
|
31 |
+
image_ocr,
|
32 |
+
duckduckgo_search, # Added the new tool
|
33 |
)
|
34 |
|
|
|
35 |
# ---------------------------------------------------------------------------
|
36 |
# Load the added system prompt from system_prompt.txt (located in the same directory)
|
37 |
# ---------------------------------------------------------------------------
|
|
|
39 |
with open(ADDED_PROMPT_PATH, "r", encoding="utf-8") as f:
|
40 |
ADDED_PROMPT = f.read().strip()
|
41 |
|
|
|
42 |
# ---------------------------------------------------------------------------
|
43 |
# Model selection helper
|
44 |
# ---------------------------------------------------------------------------
|
45 |
|
46 |
+
load_dotenv() # Make sure we read credentials from .env
|
47 |
|
48 |
+
def _select_model() -> Union[OpenAIChatCompletionsModel, LitellmModel]:
|
49 |
+
"""Return an OpenAI Agents SDK model instance as configured by env variables."""
|
50 |
|
51 |
provider = os.getenv("MODEL_PROVIDER", "hf").lower()
|
52 |
+
# Ensure API keys are loaded if not directly passed to model constructors
|
53 |
+
# OpenAI API key is typically read by the library from OPENAI_API_KEY env var
|
54 |
+
# LiteLLM also often relies on environment variables for keys
|
55 |
|
56 |
if provider == "hf":
|
57 |
+
hf_model_id = os.getenv("HF_MODEL", "NousResearch/Nous-Hermes-2-Mixtral-8x7B-DPO") # Example, ensure this is a valid LiteLLM model ID
|
58 |
+
# LiteLLM typically requires a prefix for HuggingFace models
|
59 |
+
if not hf_model_id.startswith("huggingface/"):
|
60 |
+
hf_model_id = f"huggingface/{hf_model_id}"
|
61 |
+
hf_token = os.getenv("HF_API_KEY") # LiteLLM might use this or HUGGINGFACE_API_KEY
|
62 |
+
# For LiteLLM, api_key parameter might be used for specific providers,
|
63 |
+
# but often it relies on env vars like HUGGINGFACE_API_KEY.
|
64 |
+
# Passing token explicitly if LitellmModel supports it, or ensuring env var is set.
|
65 |
+
return LitellmModel(model=hf_model_id, api_key=hf_token if hf_token else None)
|
66 |
+
|
67 |
|
68 |
if provider == "openai":
|
|
|
69 |
openai_model_id = os.getenv("OPENAI_MODEL", "gpt-3.5-turbo")
|
70 |
+
openai_token = os.getenv("OPENAI_API_KEY") # OpenAIChatCompletionsModel will use this by default if set in env
|
71 |
+
return OpenAIChatCompletionsModel(
|
72 |
+
model=openai_model_id,
|
73 |
+
api_key=openai_token # Explicitly passing, though often picked from env
|
74 |
)
|
75 |
|
76 |
raise ValueError(
|
|
|
82 |
# Core Agent implementation
|
83 |
# ---------------------------------------------------------------------------
|
84 |
|
85 |
+
DEFAULT_TOOLS: Sequence[Callable] = [
|
86 |
+
duckduckgo_search,
|
87 |
+
python_run,
|
88 |
+
load_spreadsheet,
|
89 |
+
youtube_transcript,
|
90 |
+
transcribe_audio,
|
91 |
+
image_ocr,
|
92 |
]
|
93 |
|
94 |
+
class GAIAAgent:
|
95 |
def __init__(
|
96 |
self,
|
97 |
+
tools: Sequence[Callable] | None = None
|
98 |
):
|
99 |
+
self.model = _select_model()
|
100 |
+
self.tools = tools or DEFAULT_TOOLS
|
101 |
+
|
102 |
+
base_system_prompt = "You are a helpful assistant designed to answer questions and complete tasks. You have access to a variety of tools to help you."
|
103 |
+
full_system_prompt = f"{base_system_prompt}\n\n{ADDED_PROMPT}"
|
104 |
+
|
105 |
+
self.agent = Agent(
|
106 |
+
model=self.model,
|
107 |
+
tools=self.tools,
|
108 |
+
instructions=full_system_prompt,
|
109 |
+
name="GAIAAgent"
|
110 |
)
|
111 |
+
|
112 |
+
async def __call__(self, question: str, **kwargs: Any) -> str:
|
113 |
+
"""
|
114 |
+
Asynchronously processes a question using the agent and returns the final answer.
|
115 |
+
kwargs are passed to Runner.run if supported, currently ignored as per plan.
|
116 |
+
"""
|
117 |
+
# As per plan, Runner.run(self.agent, question) is used.
|
118 |
+
# If session_id or other kwargs are needed by Runner.run, this might need adjustment.
|
119 |
+
response = await Runner.run(self.agent, question)
|
120 |
+
|
121 |
+
# Extract the final output. Assuming response.final_output is the way.
|
122 |
+
# The type of final_output needs to be handled (e.g. if it's a message object or just text)
|
123 |
+
final_answer = response.final_output
|
124 |
+
if hasattr(final_answer, 'content'): # Example if final_output is a message object
|
125 |
+
final_answer_text = str(final_answer.content)
|
126 |
+
else:
|
127 |
+
final_answer_text = str(final_answer)
|
128 |
+
|
129 |
+
return final_answer_text.strip()
|
130 |
|
131 |
# ---------------------------------------------------------------------------
|
132 |
# Factory helpers expected by app.py
|
133 |
# ---------------------------------------------------------------------------
|
134 |
|
135 |
+
def gaia_agent(*, extra_tools: Sequence[Callable] | None = None) -> GAIAAgent:
|
136 |
+
"""
|
137 |
+
Factory function to create a GAIAAgent instance with default and optional extra tools.
|
138 |
+
"""
|
139 |
toolset = list(DEFAULT_TOOLS)
|
140 |
if extra_tools:
|
141 |
toolset.extend(extra_tools)
|
app.py
CHANGED
@@ -2,6 +2,7 @@ import os
|
|
2 |
import gradio as gr
|
3 |
import requests
|
4 |
import pandas as pd
|
|
|
5 |
|
6 |
# --- Our Agent ---
|
7 |
from agent import gaia_agent
|
@@ -13,10 +14,11 @@ DEBUG = os.getenv("DEBUG", "0") == "1"
|
|
13 |
# --- Constants ---
|
14 |
DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space"
|
15 |
|
16 |
-
|
|
|
17 |
"""
|
18 |
-
Fetches all questions, runs the
|
19 |
-
and displays the results.
|
20 |
"""
|
21 |
# --- Determine HF Space Runtime URL and Repo URL ---
|
22 |
space_id = os.getenv("SPACE_ID") # Get the SPACE_ID for sending link to the code
|
@@ -32,10 +34,10 @@ def run_and_submit_all( profile: gr.OAuthProfile | None):
|
|
32 |
questions_url = f"{api_url}/questions"
|
33 |
submit_url = f"{api_url}/submit"
|
34 |
|
35 |
-
# 1. Instantiate Agent
|
36 |
try:
|
37 |
agent = gaia_agent()
|
38 |
-
print("
|
39 |
except Exception as e:
|
40 |
print(f"Error instantiating agent: {e}")
|
41 |
return f"Error initializing agent: {e}", None
|
@@ -48,7 +50,9 @@ def run_and_submit_all( profile: gr.OAuthProfile | None):
|
|
48 |
import json
|
49 |
|
50 |
try:
|
51 |
-
|
|
|
|
|
52 |
response.raise_for_status()
|
53 |
questions_data = response.json()
|
54 |
if not questions_data:
|
@@ -57,7 +61,7 @@ def run_and_submit_all( profile: gr.OAuthProfile | None):
|
|
57 |
print(f"Fetched {len(questions_data)} questions.")
|
58 |
except json.JSONDecodeError as e:
|
59 |
print(f"Error decoding JSON response from questions endpoint: {e}")
|
60 |
-
print(f"Response text: {response.text[:500]}")
|
61 |
return f"Error decoding server response for questions: {e}", None
|
62 |
except requests.exceptions.RequestException as e:
|
63 |
print(f"Error fetching questions: {e}")
|
@@ -77,7 +81,8 @@ def run_and_submit_all( profile: gr.OAuthProfile | None):
|
|
77 |
print(f"Skipping item with missing task_id or question: {item}")
|
78 |
continue
|
79 |
try:
|
80 |
-
|
|
|
81 |
# --- DEBUG LOGGING ---
|
82 |
if DEBUG:
|
83 |
print(f"[DEBUG] Task {task_id}: Answer type: {type(submitted_answer)}, Value: {repr(submitted_answer)}")
|
@@ -104,7 +109,8 @@ def run_and_submit_all( profile: gr.OAuthProfile | None):
|
|
104 |
# 5. Submit
|
105 |
print(f"Submitting {len(answers_payload)} answers to: {submit_url}")
|
106 |
try:
|
107 |
-
|
|
|
108 |
response.raise_for_status()
|
109 |
result_data = response.json()
|
110 |
final_status = (
|
@@ -122,7 +128,7 @@ def run_and_submit_all( profile: gr.OAuthProfile | None):
|
|
122 |
try:
|
123 |
error_json = e.response.json()
|
124 |
error_detail += f" Detail: {error_json.get('detail', e.response.text)}"
|
125 |
-
except requests.exceptions.JSONDecodeError:
|
126 |
error_detail += f" Response: {e.response.text[:500]}"
|
127 |
status_message = f"Submission Failed: {error_detail}"
|
128 |
print(status_message)
|
@@ -170,6 +176,7 @@ with gr.Blocks() as demo:
|
|
170 |
status_output = gr.Textbox(label="Run Status / Submission Result", lines=5, interactive=False)
|
171 |
results_table = gr.DataFrame(label="Questions and Agent Answers", wrap=True)
|
172 |
|
|
|
173 |
run_button.click(
|
174 |
fn=run_and_submit_all,
|
175 |
outputs=[status_output, results_table]
|
|
|
2 |
import gradio as gr
|
3 |
import requests
|
4 |
import pandas as pd
|
5 |
+
import asyncio
|
6 |
|
7 |
# --- Our Agent ---
|
8 |
from agent import gaia_agent
|
|
|
14 |
# --- Constants ---
|
15 |
DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space"
|
16 |
|
17 |
+
# 2. Modified function definition to be async def
|
18 |
+
async def run_and_submit_all( profile: gr.OAuthProfile | None):
|
19 |
"""
|
20 |
+
Fetches all questions, runs the GAIAAgent on them, submits all answers,
|
21 |
+
and displays the results. Now an async function.
|
22 |
"""
|
23 |
# --- Determine HF Space Runtime URL and Repo URL ---
|
24 |
space_id = os.getenv("SPACE_ID") # Get the SPACE_ID for sending link to the code
|
|
|
34 |
questions_url = f"{api_url}/questions"
|
35 |
submit_url = f"{api_url}/submit"
|
36 |
|
37 |
+
# 1. Instantiate Agent
|
38 |
try:
|
39 |
agent = gaia_agent()
|
40 |
+
print("GAIAAgent instantiated successfully.")
|
41 |
except Exception as e:
|
42 |
print(f"Error instantiating agent: {e}")
|
43 |
return f"Error initializing agent: {e}", None
|
|
|
50 |
import json
|
51 |
|
52 |
try:
|
53 |
+
# Using asyncio.to_thread to run synchronous requests.get in a separate thread
|
54 |
+
# to avoid blocking the asyncio event loop.
|
55 |
+
response = await asyncio.to_thread(requests.get, questions_url, timeout=15)
|
56 |
response.raise_for_status()
|
57 |
questions_data = response.json()
|
58 |
if not questions_data:
|
|
|
61 |
print(f"Fetched {len(questions_data)} questions.")
|
62 |
except json.JSONDecodeError as e:
|
63 |
print(f"Error decoding JSON response from questions endpoint: {e}")
|
64 |
+
print(f"Response text: {response.text[:500]}") # type: ignore
|
65 |
return f"Error decoding server response for questions: {e}", None
|
66 |
except requests.exceptions.RequestException as e:
|
67 |
print(f"Error fetching questions: {e}")
|
|
|
81 |
print(f"Skipping item with missing task_id or question: {item}")
|
82 |
continue
|
83 |
try:
|
84 |
+
# 3. Changed agent invocation to await agent call
|
85 |
+
submitted_answer = await agent(question_text)
|
86 |
# --- DEBUG LOGGING ---
|
87 |
if DEBUG:
|
88 |
print(f"[DEBUG] Task {task_id}: Answer type: {type(submitted_answer)}, Value: {repr(submitted_answer)}")
|
|
|
109 |
# 5. Submit
|
110 |
print(f"Submitting {len(answers_payload)} answers to: {submit_url}")
|
111 |
try:
|
112 |
+
# Using asyncio.to_thread for synchronous requests.post
|
113 |
+
response = await asyncio.to_thread(requests.post, submit_url, json=submission_data, timeout=60)
|
114 |
response.raise_for_status()
|
115 |
result_data = response.json()
|
116 |
final_status = (
|
|
|
128 |
try:
|
129 |
error_json = e.response.json()
|
130 |
error_detail += f" Detail: {error_json.get('detail', e.response.text)}"
|
131 |
+
except requests.exceptions.JSONDecodeError: # Changed from requests.JSONDecodeError
|
132 |
error_detail += f" Response: {e.response.text[:500]}"
|
133 |
status_message = f"Submission Failed: {error_detail}"
|
134 |
print(status_message)
|
|
|
176 |
status_output = gr.Textbox(label="Run Status / Submission Result", lines=5, interactive=False)
|
177 |
results_table = gr.DataFrame(label="Questions and Agent Answers", wrap=True)
|
178 |
|
179 |
+
# 5. Gradio's click call remains the same, it should handle async functions.
|
180 |
run_button.click(
|
181 |
fn=run_and_submit_all,
|
182 |
outputs=[status_output, results_table]
|
requirements.txt
CHANGED
@@ -1,7 +1,7 @@
|
|
1 |
gradio
|
2 |
requests
|
3 |
pandas
|
4 |
-
|
5 |
duckduckgo-search
|
6 |
youtube-transcript-api
|
7 |
pytesseract
|
|
|
1 |
gradio
|
2 |
requests
|
3 |
pandas
|
4 |
+
openai-agents
|
5 |
duckduckgo-search
|
6 |
youtube-transcript-api
|
7 |
pytesseract
|
tools.py
CHANGED
@@ -1,166 +1,131 @@
|
|
1 |
-
# Custom tools for
|
2 |
from __future__ import annotations
|
|
|
3 |
import contextlib
|
4 |
import io
|
5 |
import os
|
6 |
-
from typing import Any,
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
7 |
|
8 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
9 |
|
10 |
-
# ----
|
11 |
-
|
12 |
-
|
13 |
-
description = """
|
14 |
-
Execute trusted Python code and return printed output + repr() of the last expression (or _result variable).
|
15 |
"""
|
16 |
-
|
17 |
-
"code": {
|
18 |
-
"type": "string",
|
19 |
-
"description": "Python code to execute",
|
20 |
-
"required": True
|
21 |
-
}
|
22 |
-
}
|
23 |
-
output_type = "string"
|
24 |
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
|
|
|
|
|
|
38 |
|
39 |
-
# ----
|
40 |
-
|
41 |
-
|
42 |
-
description = """
|
43 |
-
Read .xlsx/.xls/.csv from disk and return rows as a list of dictionaries with string keys.
|
44 |
"""
|
45 |
-
|
46 |
-
"path": {
|
47 |
-
"type": "string",
|
48 |
-
"description": "Path to .csv/.xls/.xlsx file",
|
49 |
-
"required": True
|
50 |
-
},
|
51 |
-
"sheet": {
|
52 |
-
"type": "string",
|
53 |
-
"description": "Sheet name or index (optional, required for Excel files only)",
|
54 |
-
"required": False,
|
55 |
-
"default": "",
|
56 |
-
"nullable": True
|
57 |
-
}
|
58 |
-
}
|
59 |
-
output_type = "array"
|
60 |
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
else:
|
71 |
-
df = pd.read_excel(path, sheet_name=sheet)
|
72 |
-
records = [{str(k): v for k, v in row.items()} for row in df.to_dict(orient="records")]
|
73 |
-
# Always return a string
|
74 |
-
return str(records)
|
75 |
|
76 |
-
# ----
|
77 |
-
|
78 |
-
|
79 |
-
description = """
|
80 |
-
Return the subtitles of a YouTube URL using youtube-transcript-api.
|
81 |
"""
|
82 |
-
|
83 |
-
"url": {
|
84 |
-
"type": "string",
|
85 |
-
"description": "YouTube URL",
|
86 |
-
"required": True
|
87 |
-
},
|
88 |
-
"lang": {
|
89 |
-
"type": "string",
|
90 |
-
"description": "Transcript language (default: en)",
|
91 |
-
"required": False,
|
92 |
-
"default": "en",
|
93 |
-
"nullable": True
|
94 |
-
}
|
95 |
-
}
|
96 |
-
output_type = "string"
|
97 |
|
98 |
-
|
99 |
-
|
100 |
-
|
101 |
-
|
102 |
-
|
103 |
-
|
104 |
-
|
|
|
|
|
|
|
105 |
|
106 |
-
# ----
|
107 |
-
|
108 |
-
|
109 |
-
description = """
|
110 |
-
Transcribe an audio file with OpenAI Whisper, returns plain text."
|
111 |
"""
|
112 |
-
|
113 |
-
"path": {
|
114 |
-
"type": "string",
|
115 |
-
"description": "Path to audio file",
|
116 |
-
"required": True
|
117 |
-
},
|
118 |
-
"model": {
|
119 |
-
"type": "string",
|
120 |
-
"description": "Model name for transcription (default: whisper-1)",
|
121 |
-
"required": False,
|
122 |
-
"default": "whisper-1",
|
123 |
-
"nullable": True
|
124 |
-
}
|
125 |
-
}
|
126 |
-
output_type = "string"
|
127 |
|
128 |
-
|
129 |
-
|
130 |
-
|
131 |
-
|
132 |
-
|
133 |
-
|
134 |
-
transcript = client.audio.transcriptions.create(model=model, file=fp)
|
135 |
-
return str(transcript.text.strip())
|
136 |
|
137 |
-
# ----
|
138 |
-
|
139 |
-
|
140 |
-
description = """
|
141 |
-
Return any text spotted in an image via pytesseract OCR.
|
142 |
"""
|
143 |
-
|
144 |
-
"path": {
|
145 |
-
"type": "string",
|
146 |
-
"description": "Path to image file",
|
147 |
-
"required": True
|
148 |
-
}
|
149 |
-
}
|
150 |
-
output_type = "string"
|
151 |
|
152 |
-
|
153 |
-
|
154 |
-
|
155 |
-
|
156 |
-
|
157 |
-
|
|
|
158 |
|
159 |
# ---------------------------------------------------------------------------
|
160 |
__all__ = [
|
161 |
-
"
|
162 |
-
"
|
163 |
-
"
|
164 |
-
"
|
165 |
-
"
|
|
|
166 |
]
|
|
|
1 |
+
# Custom tools for OpenAI Agents
|
2 |
from __future__ import annotations
|
3 |
+
|
4 |
import contextlib
|
5 |
import io
|
6 |
import os
|
7 |
+
from typing import Any, List, Union
|
8 |
+
|
9 |
+
from openai_agents import function_tool # Using openai_agents
|
10 |
+
import pandas as pd
|
11 |
+
import openai
|
12 |
+
from PIL import Image
|
13 |
+
import pytesseract
|
14 |
+
from duckduckgo_search import DDGS
|
15 |
+
from urllib.parse import urlparse, parse_qs # For youtube_transcript
|
16 |
+
from youtube_transcript_api import YouTubeTranscriptApi # For youtube_transcript, corrected import
|
17 |
|
18 |
+
# ---- 1. PythonRunTool -> python_run function ----------------------------------
|
19 |
+
@function_tool
|
20 |
+
def python_run(code: str) -> str:
|
21 |
+
"""
|
22 |
+
Execute trusted Python code and return printed output + repr() of the last expression (or _result variable).
|
23 |
+
|
24 |
+
Args:
|
25 |
+
code (str): Python code to execute.
|
26 |
+
"""
|
27 |
+
buf, ns = io.StringIO(), {}
|
28 |
+
last = None
|
29 |
+
try:
|
30 |
+
with contextlib.redirect_stdout(buf):
|
31 |
+
exec(compile(code, "<agent-python>", "exec"), {}, ns)
|
32 |
+
last = ns.get("_result", None)
|
33 |
+
except Exception as e:
|
34 |
+
raise RuntimeError(f"PythonRunTool error: {e}") from e
|
35 |
+
out = buf.getvalue()
|
36 |
+
# Always return a string
|
37 |
+
result = (out + (repr(last) if last is not None else "")).strip()
|
38 |
+
return str(result)
|
39 |
|
40 |
+
# ---- 2. ExcelLoaderTool -> load_spreadsheet function --------------------------
|
41 |
+
@function_tool
|
42 |
+
def load_spreadsheet(path: str, sheet: Union[str, int, None] = None) -> str:
|
|
|
|
|
43 |
"""
|
44 |
+
Read .xlsx/.xls/.csv from disk and return rows as a list of dictionaries with string keys.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
45 |
|
46 |
+
Args:
|
47 |
+
path (str): Path to .csv/.xls/.xlsx file.
|
48 |
+
sheet (Union[str, int, None], optional): Sheet name or index (optional, required for Excel files only). Defaults to None.
|
49 |
+
"""
|
50 |
+
if not os.path.isfile(path):
|
51 |
+
raise FileNotFoundError(path)
|
52 |
+
ext = os.path.splitext(path)[1].lower()
|
53 |
+
if sheet == "": # Treat empty string as None for sheet name
|
54 |
+
sheet = None
|
55 |
+
if ext == ".csv":
|
56 |
+
df = pd.read_csv(path)
|
57 |
+
else:
|
58 |
+
df = pd.read_excel(path, sheet_name=sheet)
|
59 |
+
records = [{str(k): v for k, v in row.items()} for row in df.to_dict(orient="records")]
|
60 |
+
# Always return a string
|
61 |
+
return str(records)
|
62 |
|
63 |
+
# ---- 3. YouTubeTranscriptTool -> youtube_transcript function ------------------
|
64 |
+
@function_tool
|
65 |
+
def youtube_transcript(url: str, lang: str = "en") -> str:
|
|
|
|
|
66 |
"""
|
67 |
+
Return the subtitles of a YouTube URL using youtube-transcript-api.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
68 |
|
69 |
+
Args:
|
70 |
+
url (str): YouTube URL.
|
71 |
+
lang (str, optional): Transcript language. Defaults to "en".
|
72 |
+
"""
|
73 |
+
vid = parse_qs(urlparse(url).query).get("v", [None])[0] or url.split("/")[-1]
|
74 |
+
# Corrected import: from youtube_transcript_api import YouTubeTranscriptApi
|
75 |
+
data = YouTubeTranscriptApi.get_transcript(vid, languages=[lang, "en", "en-US", "en-GB"])
|
76 |
+
text = " ".join(d["text"] for d in data).strip()
|
77 |
+
return str(text)
|
|
|
|
|
|
|
|
|
|
|
78 |
|
79 |
+
# ---- 4. AudioTranscriptionTool -> transcribe_audio function -------------------
|
80 |
+
@function_tool
|
81 |
+
def transcribe_audio(path: str, model: str = "whisper-1") -> str:
|
|
|
|
|
82 |
"""
|
83 |
+
Transcribe an audio file with OpenAI Whisper, returns plain text.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
84 |
|
85 |
+
Args:
|
86 |
+
path (str): Path to audio file.
|
87 |
+
model (str, optional): Model name for transcription. Defaults to "whisper-1".
|
88 |
+
"""
|
89 |
+
if not os.path.isfile(path):
|
90 |
+
raise FileNotFoundError(path)
|
91 |
+
client = openai.OpenAI(api_key=os.getenv("OPENAI_API_KEY"))
|
92 |
+
with open(path, "rb") as fp:
|
93 |
+
transcript_data = client.audio.transcriptions.create(model=model, file=fp) # Renamed to transcript_data
|
94 |
+
return str(transcript_data.text.strip())
|
95 |
|
96 |
+
# ---- 5. SimpleOCRTool -> image_ocr function ------------------------------------
|
97 |
+
@function_tool
|
98 |
+
def image_ocr(path: str) -> str:
|
|
|
|
|
99 |
"""
|
100 |
+
Return any text spotted in an image via pytesseract OCR.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
101 |
|
102 |
+
Args:
|
103 |
+
path (str): Path to image file.
|
104 |
+
"""
|
105 |
+
if not os.path.isfile(path):
|
106 |
+
raise FileNotFoundError(path)
|
107 |
+
return str(pytesseract.image_to_string(Image.open(path)).strip())
|
|
|
|
|
108 |
|
109 |
+
# ---- 6. New DuckDuckGo Search Tool ---------------------------------------------
|
110 |
+
@function_tool
|
111 |
+
def duckduckgo_search(query: str) -> str:
|
|
|
|
|
112 |
"""
|
113 |
+
Searches the web using DuckDuckGo and returns a summary of results.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
114 |
|
115 |
+
Args:
|
116 |
+
query (str): The search query.
|
117 |
+
"""
|
118 |
+
with DDGS() as ddgs:
|
119 |
+
results = ddgs.text(query, max_results=5) # Get top 5 results
|
120 |
+
summary = "\n".join([f"{r['title']}: {r['body']}" for r in results]) if results else "No results found."
|
121 |
+
return summary
|
122 |
|
123 |
# ---------------------------------------------------------------------------
|
124 |
__all__ = [
|
125 |
+
"python_run",
|
126 |
+
"load_spreadsheet",
|
127 |
+
"youtube_transcript",
|
128 |
+
"transcribe_audio",
|
129 |
+
"image_ocr",
|
130 |
+
"duckduckgo_search",
|
131 |
]
|