Spaces:
Sleeping
Sleeping
Upload 5 files
Browse files- agent.py +61 -101
- app.py +10 -17
- requirements.txt +4 -2
- tools.py +84 -73
agent.py
CHANGED
@@ -1,144 +1,104 @@
|
|
1 |
-
"""GAIA benchmark agent using OpenAI Agents SDK.
|
2 |
-
|
3 |
-
This module exposes:
|
4 |
-
|
5 |
-
* ``gaia_agent()`` – factory returning a ready‑to‑use agent instance.
|
6 |
-
* ``GAIAAgent`` – a class that wraps ``openai_agents.Agent``.
|
7 |
-
|
8 |
-
The LLM backend is chosen at runtime via the ``MODEL_PROVIDER``
|
9 |
-
environment variable (``hf`` or ``openai``).
|
10 |
"""
|
|
|
|
|
|
|
|
|
11 |
|
|
|
12 |
import os
|
13 |
-
|
14 |
-
from typing import Any, Sequence, Callable, Union # Added Callable and Union
|
15 |
|
16 |
from dotenv import load_dotenv
|
|
|
17 |
|
18 |
-
#
|
19 |
-
from openai_agents import Agent, Runner
|
20 |
-
from openai_agents.models.openai_chat_completions import OpenAIChatCompletionsModel
|
21 |
-
from openai_agents.extensions.models.litellm_model import LitellmModel
|
22 |
-
# FunctionToolType could be imported if it's a public type, for now using Callable
|
23 |
-
# from openai_agents import FunctionToolType # Example if such type exists
|
24 |
-
|
25 |
-
# Custom Tools from tools.py (now functions)
|
26 |
from tools import (
|
27 |
python_run,
|
28 |
load_spreadsheet,
|
29 |
youtube_transcript,
|
30 |
transcribe_audio,
|
31 |
image_ocr,
|
32 |
-
duckduckgo_search,
|
33 |
)
|
34 |
|
35 |
# ---------------------------------------------------------------------------
|
36 |
-
# Load the added system prompt
|
37 |
# ---------------------------------------------------------------------------
|
38 |
ADDED_PROMPT_PATH = os.path.join(os.path.dirname(__file__), "added_prompt.txt")
|
39 |
with open(ADDED_PROMPT_PATH, "r", encoding="utf-8") as f:
|
40 |
ADDED_PROMPT = f.read().strip()
|
41 |
|
42 |
-
|
43 |
-
# Model selection helper
|
44 |
-
# ---------------------------------------------------------------------------
|
45 |
|
46 |
-
load_dotenv() # Make sure we read credentials from .env
|
47 |
-
|
48 |
-
def _select_model() -> Union[OpenAIChatCompletionsModel, LitellmModel]:
|
49 |
-
"""Return an OpenAI Agents SDK model instance as configured by env variables."""
|
50 |
|
|
|
|
|
51 |
provider = os.getenv("MODEL_PROVIDER", "hf").lower()
|
52 |
-
# Ensure API keys are loaded if not directly passed to model constructors
|
53 |
-
# OpenAI API key is typically read by the library from OPENAI_API_KEY env var
|
54 |
-
# LiteLLM also often relies on environment variables for keys
|
55 |
-
|
56 |
-
if provider == "hf":
|
57 |
-
hf_model_id = os.getenv("HF_MODEL", "NousResearch/Nous-Hermes-2-Mixtral-8x7B-DPO") # Example, ensure this is a valid LiteLLM model ID
|
58 |
-
# LiteLLM typically requires a prefix for HuggingFace models
|
59 |
-
if not hf_model_id.startswith("huggingface/"):
|
60 |
-
hf_model_id = f"huggingface/{hf_model_id}"
|
61 |
-
hf_token = os.getenv("HF_API_KEY") # LiteLLM might use this or HUGGINGFACE_API_KEY
|
62 |
-
# For LiteLLM, api_key parameter might be used for specific providers,
|
63 |
-
# but often it relies on env vars like HUGGINGFACE_API_KEY.
|
64 |
-
# Passing token explicitly if LitellmModel supports it, or ensuring env var is set.
|
65 |
-
return LitellmModel(model=hf_model_id, api_key=hf_token if hf_token else None)
|
66 |
-
|
67 |
|
68 |
if provider == "openai":
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
|
76 |
raise ValueError(
|
77 |
-
f"Unsupported MODEL_PROVIDER: {provider!r}. "
|
78 |
-
"Use 'hf' (default) or 'openai'."
|
79 |
)
|
80 |
|
81 |
-
# ---------------------------------------------------------------------------
|
82 |
-
# Core Agent implementation
|
83 |
-
# ---------------------------------------------------------------------------
|
84 |
|
85 |
-
DEFAULT_TOOLS:
|
86 |
-
duckduckgo_search,
|
87 |
python_run,
|
88 |
load_spreadsheet,
|
89 |
youtube_transcript,
|
90 |
transcribe_audio,
|
91 |
image_ocr,
|
|
|
92 |
]
|
93 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
94 |
class GAIAAgent:
|
95 |
-
|
96 |
-
|
97 |
-
|
98 |
-
|
99 |
-
|
100 |
-
|
101 |
-
|
102 |
-
|
103 |
-
|
104 |
-
|
105 |
-
|
106 |
-
|
107 |
-
|
108 |
-
|
109 |
-
name="GAIAAgent"
|
110 |
-
)
|
111 |
-
|
112 |
-
async def __call__(self, question: str, **kwargs: Any) -> str:
|
113 |
-
"""
|
114 |
-
Asynchronously processes a question using the agent and returns the final answer.
|
115 |
-
kwargs are passed to Runner.run if supported, currently ignored as per plan.
|
116 |
-
"""
|
117 |
-
# As per plan, Runner.run(self.agent, question) is used.
|
118 |
-
# If session_id or other kwargs are needed by Runner.run, this might need adjustment.
|
119 |
-
response = await Runner.run(self.agent, question)
|
120 |
-
|
121 |
-
# Extract the final output. Assuming response.final_output is the way.
|
122 |
-
# The type of final_output needs to be handled (e.g. if it's a message object or just text)
|
123 |
-
final_answer = response.final_output
|
124 |
-
if hasattr(final_answer, 'content'): # Example if final_output is a message object
|
125 |
-
final_answer_text = str(final_answer.content)
|
126 |
else:
|
127 |
-
|
128 |
-
|
129 |
-
return final_answer_text.strip()
|
130 |
|
131 |
-
# ---------------------------------------------------------------------------
|
132 |
-
# Factory helpers expected by app.py
|
133 |
-
# ---------------------------------------------------------------------------
|
134 |
|
135 |
-
def gaia_agent(*, extra_tools: Sequence[
|
136 |
-
"""
|
137 |
-
|
138 |
-
|
139 |
-
toolset = list(DEFAULT_TOOLS)
|
140 |
-
if extra_tools:
|
141 |
-
toolset.extend(extra_tools)
|
142 |
-
return GAIAAgent(tools=toolset)
|
143 |
|
144 |
__all__ = ["GAIAAgent", "gaia_agent"]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
"""
|
2 |
+
GAIA benchmark agent using the OpenAI Agents SDK.
|
3 |
+
"""
|
4 |
+
|
5 |
+
from __future__ import annotations
|
6 |
|
7 |
+
import asyncio
|
8 |
import os
|
9 |
+
from typing import Any, Sequence, Callable, List
|
|
|
10 |
|
11 |
from dotenv import load_dotenv
|
12 |
+
from agents import Agent, Runner, FunctionTool, Tool
|
13 |
|
14 |
+
# Import all function tools
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
15 |
from tools import (
|
16 |
python_run,
|
17 |
load_spreadsheet,
|
18 |
youtube_transcript,
|
19 |
transcribe_audio,
|
20 |
image_ocr,
|
21 |
+
duckduckgo_search,
|
22 |
)
|
23 |
|
24 |
# ---------------------------------------------------------------------------
|
25 |
+
# Load the added system prompt
|
26 |
# ---------------------------------------------------------------------------
|
27 |
ADDED_PROMPT_PATH = os.path.join(os.path.dirname(__file__), "added_prompt.txt")
|
28 |
with open(ADDED_PROMPT_PATH, "r", encoding="utf-8") as f:
|
29 |
ADDED_PROMPT = f.read().strip()
|
30 |
|
31 |
+
load_dotenv()
|
|
|
|
|
32 |
|
|
|
|
|
|
|
|
|
33 |
|
34 |
+
def _select_model() -> str:
|
35 |
+
"""Return a model identifier appropriate for the Agents SDK based on environment settings."""
|
36 |
provider = os.getenv("MODEL_PROVIDER", "hf").lower()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
37 |
|
38 |
if provider == "openai":
|
39 |
+
model_name = os.getenv("OPENAI_MODEL", "gpt-4o-mini")
|
40 |
+
return f"openai/{model_name}"
|
41 |
+
|
42 |
+
if provider == "hf":
|
43 |
+
hf_model_id = os.getenv("HF_MODEL", "Qwen/Qwen2.5-Coder-32B-Instruct")
|
44 |
+
return f"litellm/huggingface/{hf_model_id}"
|
45 |
|
46 |
raise ValueError(
|
47 |
+
f"Unsupported MODEL_PROVIDER: {provider!r}. Expected 'openai' or 'hf'."
|
|
|
48 |
)
|
49 |
|
|
|
|
|
|
|
50 |
|
51 |
+
DEFAULT_TOOLS: List[FunctionTool] = [
|
|
|
52 |
python_run,
|
53 |
load_spreadsheet,
|
54 |
youtube_transcript,
|
55 |
transcribe_audio,
|
56 |
image_ocr,
|
57 |
+
duckduckgo_search,
|
58 |
]
|
59 |
|
60 |
+
|
61 |
+
def _build_agent(extra_tools: Sequence[FunctionTool] | None = None) -> Agent:
|
62 |
+
"""Construct the underlying Agents SDK `Agent` instance."""
|
63 |
+
instructions = (
|
64 |
+
"You are a helpful assistant tasked with answering questions using the available tools.\n\n"
|
65 |
+
+ ADDED_PROMPT
|
66 |
+
)
|
67 |
+
|
68 |
+
tools: Sequence[Tool] = list(DEFAULT_TOOLS)
|
69 |
+
if extra_tools:
|
70 |
+
tools = list(tools) + list(extra_tools)
|
71 |
+
|
72 |
+
return Agent(
|
73 |
+
name="GAIA Agent",
|
74 |
+
instructions=instructions,
|
75 |
+
tools=tools,
|
76 |
+
model=_select_model(),
|
77 |
+
)
|
78 |
+
|
79 |
+
|
80 |
class GAIAAgent:
|
81 |
+
"""Thin synchronous wrapper around an asynchronous Agents SDK agent."""
|
82 |
+
|
83 |
+
def __init__(self, *, extra_tools: Sequence[FunctionTool] | None = None):
|
84 |
+
self._agent = _build_agent(extra_tools=extra_tools)
|
85 |
+
|
86 |
+
async def _arun(self, question: str) -> str:
|
87 |
+
result = await Runner.run(self._agent, question)
|
88 |
+
return str(result.final_output).strip()
|
89 |
+
|
90 |
+
def __call__(self, question: str, **kwargs: Any) -> str:
|
91 |
+
try:
|
92 |
+
loop = asyncio.get_running_loop()
|
93 |
+
except RuntimeError:
|
94 |
+
return asyncio.run(self._arun(question))
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
95 |
else:
|
96 |
+
return loop.run_until_complete(self._arun(question))
|
|
|
|
|
97 |
|
|
|
|
|
|
|
98 |
|
99 |
+
def gaia_agent(*, extra_tools: Sequence[FunctionTool] | None = None) -> GAIAAgent:
|
100 |
+
"""Factory returning a ready‑to‑use GAIAAgent instance."""
|
101 |
+
return GAIAAgent(extra_tools=extra_tools)
|
102 |
+
|
|
|
|
|
|
|
|
|
103 |
|
104 |
__all__ = ["GAIAAgent", "gaia_agent"]
|
app.py
CHANGED
@@ -2,7 +2,6 @@ import os
|
|
2 |
import gradio as gr
|
3 |
import requests
|
4 |
import pandas as pd
|
5 |
-
import asyncio
|
6 |
|
7 |
# --- Our Agent ---
|
8 |
from agent import gaia_agent
|
@@ -14,11 +13,10 @@ DEBUG = os.getenv("DEBUG", "0") == "1"
|
|
14 |
# --- Constants ---
|
15 |
DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space"
|
16 |
|
17 |
-
|
18 |
-
async def run_and_submit_all( profile: gr.OAuthProfile | None):
|
19 |
"""
|
20 |
-
Fetches all questions, runs the
|
21 |
-
and displays the results.
|
22 |
"""
|
23 |
# --- Determine HF Space Runtime URL and Repo URL ---
|
24 |
space_id = os.getenv("SPACE_ID") # Get the SPACE_ID for sending link to the code
|
@@ -34,10 +32,10 @@ async def run_and_submit_all( profile: gr.OAuthProfile | None):
|
|
34 |
questions_url = f"{api_url}/questions"
|
35 |
submit_url = f"{api_url}/submit"
|
36 |
|
37 |
-
# 1. Instantiate Agent
|
38 |
try:
|
39 |
agent = gaia_agent()
|
40 |
-
print("
|
41 |
except Exception as e:
|
42 |
print(f"Error instantiating agent: {e}")
|
43 |
return f"Error initializing agent: {e}", None
|
@@ -50,9 +48,7 @@ async def run_and_submit_all( profile: gr.OAuthProfile | None):
|
|
50 |
import json
|
51 |
|
52 |
try:
|
53 |
-
|
54 |
-
# to avoid blocking the asyncio event loop.
|
55 |
-
response = await asyncio.to_thread(requests.get, questions_url, timeout=15)
|
56 |
response.raise_for_status()
|
57 |
questions_data = response.json()
|
58 |
if not questions_data:
|
@@ -61,7 +57,7 @@ async def run_and_submit_all( profile: gr.OAuthProfile | None):
|
|
61 |
print(f"Fetched {len(questions_data)} questions.")
|
62 |
except json.JSONDecodeError as e:
|
63 |
print(f"Error decoding JSON response from questions endpoint: {e}")
|
64 |
-
print(f"Response text: {response.text[:500]}")
|
65 |
return f"Error decoding server response for questions: {e}", None
|
66 |
except requests.exceptions.RequestException as e:
|
67 |
print(f"Error fetching questions: {e}")
|
@@ -81,8 +77,7 @@ async def run_and_submit_all( profile: gr.OAuthProfile | None):
|
|
81 |
print(f"Skipping item with missing task_id or question: {item}")
|
82 |
continue
|
83 |
try:
|
84 |
-
|
85 |
-
submitted_answer = await agent(question_text)
|
86 |
# --- DEBUG LOGGING ---
|
87 |
if DEBUG:
|
88 |
print(f"[DEBUG] Task {task_id}: Answer type: {type(submitted_answer)}, Value: {repr(submitted_answer)}")
|
@@ -109,8 +104,7 @@ async def run_and_submit_all( profile: gr.OAuthProfile | None):
|
|
109 |
# 5. Submit
|
110 |
print(f"Submitting {len(answers_payload)} answers to: {submit_url}")
|
111 |
try:
|
112 |
-
|
113 |
-
response = await asyncio.to_thread(requests.post, submit_url, json=submission_data, timeout=60)
|
114 |
response.raise_for_status()
|
115 |
result_data = response.json()
|
116 |
final_status = (
|
@@ -128,7 +122,7 @@ async def run_and_submit_all( profile: gr.OAuthProfile | None):
|
|
128 |
try:
|
129 |
error_json = e.response.json()
|
130 |
error_detail += f" Detail: {error_json.get('detail', e.response.text)}"
|
131 |
-
except requests.exceptions.JSONDecodeError:
|
132 |
error_detail += f" Response: {e.response.text[:500]}"
|
133 |
status_message = f"Submission Failed: {error_detail}"
|
134 |
print(status_message)
|
@@ -176,7 +170,6 @@ with gr.Blocks() as demo:
|
|
176 |
status_output = gr.Textbox(label="Run Status / Submission Result", lines=5, interactive=False)
|
177 |
results_table = gr.DataFrame(label="Questions and Agent Answers", wrap=True)
|
178 |
|
179 |
-
# 5. Gradio's click call remains the same, it should handle async functions.
|
180 |
run_button.click(
|
181 |
fn=run_and_submit_all,
|
182 |
outputs=[status_output, results_table]
|
|
|
2 |
import gradio as gr
|
3 |
import requests
|
4 |
import pandas as pd
|
|
|
5 |
|
6 |
# --- Our Agent ---
|
7 |
from agent import gaia_agent
|
|
|
13 |
# --- Constants ---
|
14 |
DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space"
|
15 |
|
16 |
+
def run_and_submit_all( profile: gr.OAuthProfile | None):
|
|
|
17 |
"""
|
18 |
+
Fetches all questions, runs the BasicAgent on them, submits all answers,
|
19 |
+
and displays the results.
|
20 |
"""
|
21 |
# --- Determine HF Space Runtime URL and Repo URL ---
|
22 |
space_id = os.getenv("SPACE_ID") # Get the SPACE_ID for sending link to the code
|
|
|
32 |
questions_url = f"{api_url}/questions"
|
33 |
submit_url = f"{api_url}/submit"
|
34 |
|
35 |
+
# 1. Instantiate Agent (now using OpenAI Agents SDK)
|
36 |
try:
|
37 |
agent = gaia_agent()
|
38 |
+
print("OpenAI Agent instantiated successfully.")
|
39 |
except Exception as e:
|
40 |
print(f"Error instantiating agent: {e}")
|
41 |
return f"Error initializing agent: {e}", None
|
|
|
48 |
import json
|
49 |
|
50 |
try:
|
51 |
+
response = requests.get(questions_url, timeout=15)
|
|
|
|
|
52 |
response.raise_for_status()
|
53 |
questions_data = response.json()
|
54 |
if not questions_data:
|
|
|
57 |
print(f"Fetched {len(questions_data)} questions.")
|
58 |
except json.JSONDecodeError as e:
|
59 |
print(f"Error decoding JSON response from questions endpoint: {e}")
|
60 |
+
print(f"Response text: {response.text[:500]}")
|
61 |
return f"Error decoding server response for questions: {e}", None
|
62 |
except requests.exceptions.RequestException as e:
|
63 |
print(f"Error fetching questions: {e}")
|
|
|
77 |
print(f"Skipping item with missing task_id or question: {item}")
|
78 |
continue
|
79 |
try:
|
80 |
+
submitted_answer = agent(question_text)
|
|
|
81 |
# --- DEBUG LOGGING ---
|
82 |
if DEBUG:
|
83 |
print(f"[DEBUG] Task {task_id}: Answer type: {type(submitted_answer)}, Value: {repr(submitted_answer)}")
|
|
|
104 |
# 5. Submit
|
105 |
print(f"Submitting {len(answers_payload)} answers to: {submit_url}")
|
106 |
try:
|
107 |
+
response = requests.post(submit_url, json=submission_data, timeout=60)
|
|
|
108 |
response.raise_for_status()
|
109 |
result_data = response.json()
|
110 |
final_status = (
|
|
|
122 |
try:
|
123 |
error_json = e.response.json()
|
124 |
error_detail += f" Detail: {error_json.get('detail', e.response.text)}"
|
125 |
+
except requests.exceptions.JSONDecodeError:
|
126 |
error_detail += f" Response: {e.response.text[:500]}"
|
127 |
status_message = f"Submission Failed: {error_detail}"
|
128 |
print(status_message)
|
|
|
170 |
status_output = gr.Textbox(label="Run Status / Submission Result", lines=5, interactive=False)
|
171 |
results_table = gr.DataFrame(label="Questions and Agent Answers", wrap=True)
|
172 |
|
|
|
173 |
run_button.click(
|
174 |
fn=run_and_submit_all,
|
175 |
outputs=[status_output, results_table]
|
requirements.txt
CHANGED
@@ -1,8 +1,10 @@
|
|
1 |
gradio
|
2 |
requests
|
3 |
pandas
|
4 |
-
openai-agents
|
|
|
5 |
duckduckgo-search
|
6 |
youtube-transcript-api
|
7 |
pytesseract
|
8 |
-
pillow
|
|
|
|
1 |
gradio
|
2 |
requests
|
3 |
pandas
|
4 |
+
openai-agents[litellm]
|
5 |
+
openai>=1.3
|
6 |
duckduckgo-search
|
7 |
youtube-transcript-api
|
8 |
pytesseract
|
9 |
+
pillow
|
10 |
+
python-dotenv
|
tools.py
CHANGED
@@ -1,131 +1,142 @@
|
|
1 |
-
|
|
|
|
|
|
|
2 |
from __future__ import annotations
|
3 |
|
4 |
import contextlib
|
5 |
import io
|
6 |
import os
|
7 |
-
from typing import
|
8 |
-
|
9 |
-
from
|
10 |
-
|
11 |
-
|
12 |
-
from PIL import Image
|
13 |
-
import pytesseract
|
14 |
-
from duckduckgo_search import DDGS
|
15 |
-
from urllib.parse import urlparse, parse_qs # For youtube_transcript
|
16 |
-
from youtube_transcript_api import YouTubeTranscriptApi # For youtube_transcript, corrected import
|
17 |
-
|
18 |
-
# ---- 1. PythonRunTool -> python_run function ----------------------------------
|
19 |
@function_tool
|
20 |
def python_run(code: str) -> str:
|
21 |
-
"""
|
22 |
-
|
23 |
|
24 |
Args:
|
25 |
-
code
|
26 |
"""
|
27 |
-
buf
|
|
|
28 |
last = None
|
29 |
try:
|
30 |
with contextlib.redirect_stdout(buf):
|
31 |
exec(compile(code, "<agent-python>", "exec"), {}, ns)
|
32 |
-
last = ns.get("_result"
|
33 |
except Exception as e:
|
34 |
-
raise RuntimeError(f"
|
|
|
35 |
out = buf.getvalue()
|
36 |
-
|
37 |
-
|
38 |
-
return str(result)
|
39 |
|
40 |
-
#
|
41 |
@function_tool
|
42 |
-
def load_spreadsheet(path: str, sheet:
|
43 |
-
"""
|
44 |
-
Read .xlsx/.xls/.csv from disk and return rows as a list of dictionaries with string keys.
|
45 |
|
46 |
Args:
|
47 |
-
path
|
48 |
-
sheet
|
49 |
"""
|
|
|
|
|
50 |
if not os.path.isfile(path):
|
51 |
raise FileNotFoundError(path)
|
52 |
ext = os.path.splitext(path)[1].lower()
|
53 |
-
if sheet == "": # Treat empty string as None for sheet name
|
54 |
-
sheet = None
|
55 |
if ext == ".csv":
|
56 |
df = pd.read_csv(path)
|
|
|
57 |
else:
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
62 |
|
63 |
-
#
|
64 |
@function_tool
|
65 |
def youtube_transcript(url: str, lang: str = "en") -> str:
|
66 |
-
"""
|
67 |
-
Return the subtitles of a YouTube URL using youtube-transcript-api.
|
68 |
|
69 |
Args:
|
70 |
-
url
|
71 |
-
lang
|
72 |
"""
|
|
|
|
|
|
|
73 |
vid = parse_qs(urlparse(url).query).get("v", [None])[0] or url.split("/")[-1]
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
return
|
78 |
|
79 |
-
|
|
|
80 |
@function_tool
|
81 |
def transcribe_audio(path: str, model: str = "whisper-1") -> str:
|
82 |
-
"""
|
83 |
-
Transcribe an audio file with OpenAI Whisper, returns plain text.
|
84 |
|
85 |
Args:
|
86 |
-
path
|
87 |
-
model
|
88 |
"""
|
|
|
|
|
89 |
if not os.path.isfile(path):
|
90 |
raise FileNotFoundError(path)
|
|
|
91 |
client = openai.OpenAI(api_key=os.getenv("OPENAI_API_KEY"))
|
92 |
with open(path, "rb") as fp:
|
93 |
-
|
94 |
-
return
|
|
|
95 |
|
96 |
-
#
|
97 |
@function_tool
|
98 |
def image_ocr(path: str) -> str:
|
99 |
-
"""
|
100 |
-
Return any text spotted in an image via pytesseract OCR.
|
101 |
|
102 |
Args:
|
103 |
-
path
|
104 |
"""
|
|
|
|
|
|
|
105 |
if not os.path.isfile(path):
|
106 |
raise FileNotFoundError(path)
|
107 |
-
return
|
|
|
108 |
|
109 |
-
#
|
110 |
@function_tool
|
111 |
-
def duckduckgo_search(query: str) -> str:
|
112 |
-
"""
|
113 |
-
Searches the web using DuckDuckGo and returns a summary of results.
|
114 |
|
115 |
Args:
|
116 |
-
query
|
|
|
117 |
"""
|
|
|
|
|
|
|
118 |
with DDGS() as ddgs:
|
119 |
-
|
120 |
-
|
121 |
-
|
122 |
-
|
123 |
-
|
124 |
-
|
125 |
-
|
126 |
-
|
127 |
-
|
128 |
-
"transcribe_audio",
|
129 |
-
"image_ocr",
|
130 |
-
"duckduckgo_search",
|
131 |
-
]
|
|
|
1 |
+
"""
|
2 |
+
Custom function tools for OpenAI Agents SDK GAIA agent.
|
3 |
+
"""
|
4 |
+
|
5 |
from __future__ import annotations
|
6 |
|
7 |
import contextlib
|
8 |
import io
|
9 |
import os
|
10 |
+
from typing import List, Dict
|
11 |
+
|
12 |
+
from agents import function_tool
|
13 |
+
|
14 |
+
# 1. --------------------------------------------------------------------
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
15 |
@function_tool
|
16 |
def python_run(code: str) -> str:
|
17 |
+
"""Execute trusted Python code and return the captured stdout together with
|
18 |
+
the repr() of the last expression (or `_result` variable if set).
|
19 |
|
20 |
Args:
|
21 |
+
code: Python code to execute.
|
22 |
"""
|
23 |
+
buf = io.StringIO()
|
24 |
+
ns: dict = {}
|
25 |
last = None
|
26 |
try:
|
27 |
with contextlib.redirect_stdout(buf):
|
28 |
exec(compile(code, "<agent-python>", "exec"), {}, ns)
|
29 |
+
last = ns.get("_result")
|
30 |
except Exception as e:
|
31 |
+
raise RuntimeError(f"python_run error: {e}") from e
|
32 |
+
|
33 |
out = buf.getvalue()
|
34 |
+
return (out + (repr(last) if last is not None else "")).strip()
|
35 |
+
|
|
|
36 |
|
37 |
+
# 2. --------------------------------------------------------------------
|
38 |
@function_tool
|
39 |
+
def load_spreadsheet(path: str, sheet: str | int | None = None) -> list[Dict[str, str]]:
|
40 |
+
"""Read .csv, .xls or .xlsx from disk and return rows as list of dictionaries.
|
|
|
41 |
|
42 |
Args:
|
43 |
+
path: Path to spreadsheet file.
|
44 |
+
sheet: Sheet name or index (for Excel files only).
|
45 |
"""
|
46 |
+
import pandas as pd
|
47 |
+
|
48 |
if not os.path.isfile(path):
|
49 |
raise FileNotFoundError(path)
|
50 |
ext = os.path.splitext(path)[1].lower()
|
|
|
|
|
51 |
if ext == ".csv":
|
52 |
df = pd.read_csv(path)
|
53 |
+
dfs = [df]
|
54 |
else:
|
55 |
+
sheets = pd.read_excel(path, sheet_name=sheet if sheet not in ("", None) else None)
|
56 |
+
if isinstance(sheets, dict):
|
57 |
+
dfs = sheets.values()
|
58 |
+
else:
|
59 |
+
dfs = [sheets]
|
60 |
+
results = []
|
61 |
+
for df in dfs:
|
62 |
+
results.extend([{str(k): v for k, v in row.items()} for row in df.to_dict(orient="records")])
|
63 |
+
return results
|
64 |
+
|
65 |
|
66 |
+
# 3. --------------------------------------------------------------------
|
67 |
@function_tool
|
68 |
def youtube_transcript(url: str, lang: str = "en") -> str:
|
69 |
+
"""Fetch the subtitles of a YouTube video.
|
|
|
70 |
|
71 |
Args:
|
72 |
+
url: YouTube video URL.
|
73 |
+
lang: Preferred transcript language code (default "en").
|
74 |
"""
|
75 |
+
from urllib.parse import urlparse, parse_qs
|
76 |
+
from youtube_transcript_api._api import YouTubeTranscriptApi
|
77 |
+
|
78 |
vid = parse_qs(urlparse(url).query).get("v", [None])[0] or url.split("/")[-1]
|
79 |
+
data = YouTubeTranscriptApi.get_transcript(
|
80 |
+
vid, languages=[lang, "en", "en-US", "en-GB"]
|
81 |
+
)
|
82 |
+
return " ".join(chunk["text"] for chunk in data).strip()
|
83 |
|
84 |
+
|
85 |
+
# 4. --------------------------------------------------------------------
|
86 |
@function_tool
|
87 |
def transcribe_audio(path: str, model: str = "whisper-1") -> str:
|
88 |
+
"""Transcribe an audio file using OpenAI Whisper.
|
|
|
89 |
|
90 |
Args:
|
91 |
+
path: Path to audio file (wav / mp3 / m4a / etc.).
|
92 |
+
model: Whisper model name (default "whisper-1").
|
93 |
"""
|
94 |
+
import openai
|
95 |
+
|
96 |
if not os.path.isfile(path):
|
97 |
raise FileNotFoundError(path)
|
98 |
+
|
99 |
client = openai.OpenAI(api_key=os.getenv("OPENAI_API_KEY"))
|
100 |
with open(path, "rb") as fp:
|
101 |
+
transcript = client.audio.transcriptions.create(model=model, file=fp)
|
102 |
+
return transcript.text.strip()
|
103 |
+
|
104 |
|
105 |
+
# 5. --------------------------------------------------------------------
|
106 |
@function_tool
|
107 |
def image_ocr(path: str) -> str:
|
108 |
+
"""Perform OCR on an image using Tesseract.
|
|
|
109 |
|
110 |
Args:
|
111 |
+
path: Path to image file.
|
112 |
"""
|
113 |
+
from PIL import Image
|
114 |
+
import pytesseract
|
115 |
+
|
116 |
if not os.path.isfile(path):
|
117 |
raise FileNotFoundError(path)
|
118 |
+
return pytesseract.image_to_string(Image.open(path)).strip()
|
119 |
+
|
120 |
|
121 |
+
# 6. --------------------------------------------------------------------
|
122 |
@function_tool
|
123 |
+
def duckduckgo_search(query: str, max_results: int = 5) -> List[Dict[str, str]]:
|
124 |
+
"""Search DuckDuckGo and return a list of result dicts with title, href and body.
|
|
|
125 |
|
126 |
Args:
|
127 |
+
query: The search query.
|
128 |
+
max_results: Maximum results to return (default 5).
|
129 |
"""
|
130 |
+
from duckduckgo_search import DDGS
|
131 |
+
|
132 |
+
results = []
|
133 |
with DDGS() as ddgs:
|
134 |
+
for r in ddgs.text(query, max_results=max_results):
|
135 |
+
results.append(
|
136 |
+
{
|
137 |
+
"title": r.get("title", ""),
|
138 |
+
"href": r.get("href", ""),
|
139 |
+
"body": r.get("body", ""),
|
140 |
+
}
|
141 |
+
)
|
142 |
+
return results
|
|
|
|
|
|
|
|