from smolagents import CodeAgent,DuckDuckGoSearchTool, HfApiModel,load_tool,tool import datetime import requests import pytz import yaml from tools.final_answer import FinalAnswerTool from Gradio_UI import GradioUI # You can call the agent with a text like: "Summarize the top news headlines in Rome, Italy." @tool def get_local_news_headlines(location: str) -> str: """ A tool that fetches top local news headlines for a given location using Currents API. Args: location: The name of the location or a keyword for the news. Returns: A string with the top headlines or an error message. """ import requests try: url = "https://api.currentsapi.services/v1/search" params = { "keywords": location, "language": "en", "apiKey": "9kgcb14yVbcFQULH9tMpF-ZS0bDx9ISbP7oJEk_lcN7pbpWu", "limit": 5 # Limit to 5 headlines } response = requests.get(url, params=params) data = response.json() if data.get("status") == "ok": headlines = [article["title"] for article in data.get("news", [])] if headlines: return f"Top headlines in {location}:\n" + "\n".join(headlines) else: return f"No news found for {location}." else: return "Error fetching news: " + data.get("message", "Unknown error") except Exception as e: return f"Error fetching news: {str(e)}" final_answer = FinalAnswerTool() # If the agent does not answer, the model is overloaded, please use another model or the following Hugging Face Endpoint that also contains qwen2.5 coder: # model_id='https://pflgm2locj2t89co.us-east-1.aws.endpoints.huggingface.cloud' model = HfApiModel( max_tokens=2096, temperature=0.5, model_id='Qwen/Qwen2.5-Coder-32B-Instruct',# it is possible that this model may be overloaded custom_role_conversions=None, ) # Import tool from Hub image_generation_tool = load_tool("agents-course/text-to-image", trust_remote_code=True) with open("prompts.yaml", 'r') as stream: prompt_templates = yaml.safe_load(stream) agent = CodeAgent( model=model, tools=[final_answer, get_local_news_headlines], ## add your tools here (don't remove final answer) max_steps=6, verbosity_level=1, grammar=None, planning_interval=None, name=None, description=None, prompt_templates=prompt_templates ) GradioUI(agent).launch()